Suppr超能文献

嗜热栖热菌的基因组:对古菌早期进化及衍生寄生现象的见解。

The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism.

作者信息

Waters Elizabeth, Hohn Michael J, Ahel Ivan, Graham David E, Adams Mark D, Barnstead Mary, Beeson Karen Y, Bibbs Lisa, Bolanos Randall, Keller Martin, Kretz Keith, Lin Xiaoying, Mathur Eric, Ni Jingwei, Podar Mircea, Richardson Toby, Sutton Granger G, Simon Melvin, Soll Dieter, Stetter Karl O, Short Jay M, Noordewier Michiel

机构信息

Diversa Corporation, 4955 Directors Place, San Diego, CA 92121, USA.

出版信息

Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12984-8. doi: 10.1073/pnas.1735403100. Epub 2003 Oct 17.

Abstract

The hyperthermophile Nanoarchaeum equitans is an obligate symbiont growing in coculture with the crenarchaeon Ignicoccus. Ribosomal protein and rRNA-based phylogenies place its branching point early in the archaeal lineage, representing the new archaeal kingdom Nanoarchaeota. The N. equitans genome (490,885 base pairs) encodes the machinery for information processing and repair, but lacks genes for lipid, cofactor, amino acid, or nucleotide biosyntheses. It is the smallest microbial genome sequenced to date, and also one of the most compact, with 95% of the DNA predicted to encode proteins or stable RNAs. Its limited biosynthetic and catabolic capacity indicates that N. equitans' symbiotic relationship to Ignicoccus is parasitic, making it the only known archaeal parasite. Unlike the small genomes of bacterial parasites that are undergoing reductive evolution, N. equitans has few pseudogenes or extensive regions of noncoding DNA. This organism represents a basal archaeal lineage and has a highly reduced genome.

摘要

嗜热古菌“纳米古菌”是一种专性共生菌,与泉古菌“火球菌”共培养生长。基于核糖体蛋白和rRNA的系统发育将其分支点置于古菌谱系的早期,代表了新的古菌门“纳米古菌门”。“纳米古菌”的基因组(490,885个碱基对)编码信息处理和修复机制,但缺乏脂质、辅因子、氨基酸或核苷酸生物合成的基因。它是迄今为止测序的最小微生物基因组,也是最紧凑的基因组之一,预计95%的DNA编码蛋白质或稳定RNA。其有限的生物合成和分解代谢能力表明“纳米古菌”与“火球菌”的共生关系是寄生性的,使其成为唯一已知的古菌寄生虫。与正在经历简化进化的细菌寄生虫的小基因组不同,“纳米古菌”几乎没有假基因或广泛的非编码DNA区域。这种生物代表了一个基础古菌谱系,并且具有高度简化的基因组。

相似文献

1
The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism.
Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12984-8. doi: 10.1073/pnas.1735403100. Epub 2003 Oct 17.
3
A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont.
Nature. 2002 May 2;417(6884):63-7. doi: 10.1038/417063a.
6
A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans.
Genome Biol. 2008;9(11):R158. doi: 10.1186/gb-2008-9-11-r158. Epub 2008 Nov 10.
7
Nanoarchaeum equitans and Ignicoccus hospitalis: new insights into a unique, intimate association of two archaea.
J Bacteriol. 2008 Mar;190(5):1743-50. doi: 10.1128/JB.01731-07. Epub 2007 Dec 28.
8
The phylum Nanoarchaeota: present knowledge and future perspectives of a unique form of life.
Res Microbiol. 2003 Apr;154(3):165-71. doi: 10.1016/S0923-2508(03)00035-4.
9
Evolutionary and functional genomics of the Archaea.
Curr Opin Microbiol. 2005 Oct;8(5):586-94. doi: 10.1016/j.mib.2005.08.003.

引用本文的文献

1
Surprising effects of differential loss in genome evolution: the last-one-out.
FEMS Microbiol Lett. 2025 Jan 10;372. doi: 10.1093/femsle/fnaf051.
3
Cooperation and Competition Were Primary Driving Forces for Biological Evolution.
Microb Physiol. 2025;35(1):13-29. doi: 10.1159/000544890. Epub 2025 Feb 25.
6
Machine learning classification of archaea and bacteria identifies novel predictive genomic features.
BMC Genomics. 2024 Oct 14;25(1):955. doi: 10.1186/s12864-024-10832-y.
7
-linked protein glycosylation in (formerly DPANN) archaea and their hosts.
J Bacteriol. 2024 Sep 19;206(9):e0020524. doi: 10.1128/jb.00205-24. Epub 2024 Aug 28.
8
Cell surface architecture of the cultivated DPANN archaeon .
J Bacteriol. 2024 Feb 22;206(2):e0035123. doi: 10.1128/jb.00351-23. Epub 2024 Jan 30.
9
The DNA Alkyltransferase Family of DNA Repair Proteins: Common Mechanisms, Diverse Functions.
Int J Mol Sci. 2023 Dec 29;25(1):463. doi: 10.3390/ijms25010463.

本文引用的文献

1
Isolation of a complete A1AO ATP synthase comprising nine subunits from the hyperthermophile Methanococcus jannaschii.
Extremophiles. 2003 Jun;7(3):249-57. doi: 10.1007/s00792-003-0318-7. Epub 2003 Apr 9.
2
The phylum Nanoarchaeota: present knowledge and future perspectives of a unique form of life.
Res Microbiol. 2003 Apr;154(3):165-71. doi: 10.1016/S0923-2508(03)00035-4.
3
A novel method for finding tRNA genes.
RNA. 2003 May;9(5):507-17. doi: 10.1261/rna.2193703.
5
Cysteine activation is an inherent in vitro property of prolyl-tRNA synthetases.
J Biol Chem. 2002 Sep 20;277(38):34743-8. doi: 10.1074/jbc.M206928200. Epub 2002 Jul 18.
6
50 million years of genomic stasis in endosymbiotic bacteria.
Science. 2002 Jun 28;296(5577):2376-9. doi: 10.1126/science.1071278.
7
A hot story from comparative genomics: reverse gyrase is the only hyperthermophile-specific protein.
Trends Genet. 2002 May;18(5):236-7. doi: 10.1016/s0168-9525(02)02650-1.
8
Noncoding RNA genes identified in AT-rich hyperthermophiles.
Proc Natl Acad Sci U S A. 2002 May 28;99(11):7542-7. doi: 10.1073/pnas.112063799.
9
A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont.
Nature. 2002 May 2;417(6884):63-7. doi: 10.1038/417063a.
10
Something new under the sea.
Nature. 2002 May 2;417(6884):27-8. doi: 10.1038/417027a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验