DeLapp Rossane C, LeBoeuf Eugene J, Bell Katherine D
Department of Civil and Environmental Engineering, Vanderbilt University, 400 24th Avenue South, Nashville, TN 37325, USA.
Chemosphere. 2004 Jan;54(4):527-39. doi: 10.1016/S0045-6535(03)00710-0.
Improved understanding of the structure of soil- and sediment-derived organic matter is critical to elucidating the mechanisms that control the reactivity and transport of contaminants in the environment. This work focuses on an experimental investigation of thermodynamic properties that are a function of the macromolecular structure of natural organic matter (NOM). A suite of thermal analysis instruments were employed to quantify glass transition temperatures (Tg), constant-pressure specific heat capacities (Cp), and thermal expansion coefficients (alpha) of several International Humic Substances Society (IHSS) soil-, sediment-, and aquatic-derived NOMs. Thermal mechanical analysis (TMA) of selected NOMs identified Tgs between 36 and 72 degrees C, and alphas ranging from 11 mum/m degrees C below the Tg to 242 mum/m degrees C above the Tg. Standard differential scanning calorimetry (DSC) and temperature-modulated differential scanning calorimetry (TMDSC) measurements provided additional evidence of glass transition behavior, including identification of multiple transition behavior in two aquatic samples. TMDSC also provided quantitative measures of Cp at 0 and 25 degrees C, ranging from 1.27 to 1.44 J/g degrees C. Results from TMA, DSC, and TMDSC analyses are consistent with glass transition theories for organic macromolecules, and the glass transition behavior of other NOM materials reported in previous studies. Discussion of the importance of quantifying these thermodynamic properties is presented in terms of improved physical and chemical characterization of NOM structures, and in terms of providing constraints to molecular simulation models of NOM structures.
深入了解土壤和沉积物中有机物质的结构对于阐明控制环境中污染物反应性和迁移的机制至关重要。这项工作聚焦于对作为天然有机物(NOM)大分子结构函数的热力学性质进行实验研究。使用了一套热分析仪器来量化几种国际腐殖质学会(IHSS)的土壤、沉积物和水生来源的NOM的玻璃化转变温度(Tg)、恒压比热容(Cp)和热膨胀系数(α)。对选定NOM的热机械分析(TMA)确定Tg在36至72摄氏度之间,α在Tg以下为11μm/m·℃,在Tg以上为242μm/m·℃。标准差示扫描量热法(DSC)和温度调制差示扫描量热法(TMDSC)测量提供了玻璃化转变行为的更多证据,包括在两个水生样品中识别出多重转变行为。TMDSC还提供了0和25摄氏度下Cp的定量测量值,范围为1.27至1.44 J/g·℃。TMA、DSC和TMDSC分析结果与有机大分子的玻璃化转变理论以及先前研究中报道的其他NOM材料的玻璃化转变行为一致。从改善NOM结构的物理和化学表征以及为NOM结构的分子模拟模型提供约束条件的角度,讨论了量化这些热力学性质的重要性。