Wassmer Gernot
Institute for Medical Statistics, Informatics, and Epidemiology, University of Cologne, Cologne, Germany.
J Biopharm Stat. 2003 Nov;13(4):585-603. doi: 10.1081/BIP-120024196.
Using multistage adaptive group sequential test designs, the investigator may perform data-driven changes in the design during the course of the trial without inflation of the Type I error rate. This is possible, for example, through the use of the inverse normal method of combining the p-values from the separate stages of the trial. Generally, conditional error functions are useful instruments for midtrial design modifications of clinical trials. Particularly, it is worthwhile to consider sample size reassessment strategies based on conditional power arguments. In this paper, approximate techniques will be proposed for the application of the inverse normal combination testing principle in superiority and noninferiority proportion studies. Planning facilities and the adaptive analysis strategies will be discussed in terms of the Type I error rate, the necessary sample size, and the power within the adaptive design. Furthermore, how to calculate confidence intervals and overall p-values will be shown.
使用多阶段自适应组序贯试验设计,研究者可以在试验过程中进行基于数据驱动的设计变更,而不会使I型错误率膨胀。例如,通过使用将试验不同阶段的p值进行合并的逆正态方法就可以做到这一点。一般来说,条件误差函数是临床试验中期设计修改的有用工具。特别是,基于条件检验效能论据来考虑样本量重新评估策略是值得的。本文将提出近似技术,用于逆正态组合检验原理在优效性和非劣效性比例研究中的应用。将从I型错误率、必要样本量以及自适应设计中的检验效能方面讨论规划工具和自适应分析策略。此外,还将展示如何计算置信区间和总体p值。