Suppr超能文献

多元回归的样本量:获取准确而非仅仅显著的回归系数。

Sample size for multiple regression: obtaining regression coefficients that are accurate, not simply significant.

作者信息

Kelley Ken, Maxwell Scott E

机构信息

Department of Psychology, University of Notre Dame, Indiana 46556, USA.

出版信息

Psychol Methods. 2003 Sep;8(3):305-21. doi: 10.1037/1082-989X.8.3.305.

Abstract

An approach to sample size planning for multiple regression is presented that emphasizes accuracy in parameter estimation (AIPE). The AIPE approach yields precise estimates of population parameters by providing necessary sample sizes in order for the likely widths of confidence intervals to be sufficiently narrow. One AIPE method yields a sample size such that the expected width of the confidence interval around the standardized population regression coefficient is equal to the width specified. An enhanced formulation ensures, with some stipulated probability, that the width of the confidence interval will be no larger than the width specified. Issues involving standardized regression coefficients and random predictors are discussed, as are the philosophical differences between AIPE and the power analytic approaches to sample size planning.

摘要

本文提出了一种多元回归样本量规划方法,该方法强调参数估计的准确性(AIPE)。AIPE方法通过提供必要的样本量,使置信区间的可能宽度足够窄,从而得到总体参数的精确估计。一种AIPE方法得出的样本量能使标准化总体回归系数周围置信区间的预期宽度等于指定宽度。一种改进的公式以一定的规定概率确保置信区间的宽度不大于指定宽度。文中讨论了涉及标准化回归系数和随机预测变量的问题,以及AIPE与样本量规划的功效分析方法之间的理论差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验