Lee Seung Seo, Yu Shukun, Withers Stephen G
Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1.
Biochemistry. 2003 Nov 11;42(44):13081-90. doi: 10.1021/bi035189g.
The unusual enzyme, Gracilariopsis alpha-1,4-glucan lyase of the sequence-related glycoside hydrolase family 31, cleaves the glycosidic bond of alpha-1,4-glucans via a beta-elimination reaction involving a covalent glycosyl-enzyme intermediate (Lee, S. S., Yu, S., and Withers, S. G. (2002) J. Am. Chem. Soc. 124, 4948-4949). The classical bell-shaped pH dependence of k(cat)/K(m) indicates two ionizable groups in the active site with apparent pK(a) values of 3.05 and 6.66. Brønsted relationships of log k(cat) versus pK(a) and log(k(cat)/K(m)) versus pK(a) for a series of aryl glucosides both show a linear monotonic dependence on leaving group pK(a) with low beta(lg) values of 0.32 and 0.33, respectively. The combination of these low beta(lg) values with large secondary deuterium kinetic isotope effects (k(H)/k(D) = 1.16 - 1.19) on the first step indicate a glycosylation step with substantial glycosidic bond cleavage and proton donation to the leaving group oxygen at the transition state. Developed oxocarbenium ion character of the transition state is also suggested by the potent inhibition afforded by acarbose and 1-deoxynojirimycin (K(i) = 20 and 130 nM, respectively) and by the substantial rate reduction afforded by adjacent fluorine substitution. For only one substrate, 5-fluoro-alpha-D-glucopyranosyl fluoride, was the second elimination step shown to be rate-limiting. The large alpha-secondary deuterium kinetic isotope effect (k(H)/k(D) = 1.23) at C-1 and the small primary deuterium kinetic isotope effect (k(H)/k(D) = 1.92) at C-2 confirm an E2 mechanism with strong E1 character for this second step. This considerable structural and mechanistic similarity with retaining alpha-glucosidases is clear evidence for the evolution of an enzyme mechanism within the family.
这种不同寻常的酶——与序列相关的糖苷水解酶家族31中的龙须菜α-1,4-葡聚糖裂解酶,通过涉及共价糖基-酶中间体的β-消除反应来裂解α-1,4-葡聚糖的糖苷键(Lee, S. S., Yu, S., and Withers, S. G. (2002) J. Am. Chem. Soc. 124, 4948 - 4949)。k(cat)/K(m)典型的钟形pH依赖性表明活性位点中有两个可电离基团,其表观pK(a)值分别为3.05和6.66。一系列芳基葡萄糖苷的log k(cat)与pK(a)以及log(k(cat)/K(m))与pK(a)的布朗斯特关系均显示出对离去基团pK(a)的线性单调依赖性,β(lg)值分别较低,为0.32和0.33。这些低β(lg)值与第一步较大的二级氘动力学同位素效应(k(H)/k(D) = 1.16 - 1.19)相结合,表明糖基化步骤在过渡态时有大量糖苷键断裂并向离去基团的氧供质子。阿卡波糖和1-脱氧野尻霉素(分别为K(i) = 20和130 nM)所提供的强效抑制以及相邻氟取代导致的显著速率降低也表明过渡态具有发展的氧鎓离子特征。对于仅一种底物5-氟-α-D-吡喃葡萄糖基氟化物,第二个消除步骤被证明是限速步骤。C-1处较大的α-二级氘动力学同位素效应(k(H)/k(D) = 1.23)和C-2处较小的一级氘动力学同位素效应(k(H)/k(D) = 1.92)证实了该第二步具有强烈E1特征的E2机制。与保留型α-葡萄糖苷酶的这种相当大的结构和机制相似性是该家族内酶机制进化的明确证据。