Lesaffre Emmanuel, Senn Stephen
Biostatistical Centre, University of Leuven, Belgium.
Stat Med. 2003 Dec 15;22(23):3583-96. doi: 10.1002/sim.1583.
Koch et al. recently (1998) proposed two covariate-adjusted approaches for the comparison of continuous, ordinal and binary responses in a randomized clinical trial (Statist. Med. 1998; 17: 1863-1892). The first is a randomization approach while the second assumes that the study is a sample of a population. Here, we study the second approach and consider the simplest cases of two treatments with a continuous response and with a binary response. Koch's second approach will be compared with the classical ANCOVA for a continuous response. From this relationship we demonstrate that Koch's method cannot preserve the probability of the type I error. Simulations with continuous responses as well as with binary outcomes confirm the aforementioned theoretical result on the performance of Koch's method under the null hypothesis of no treatment effect. However, this poses only a problem for relatively small to moderate sample sizes. Further, as specified in the original paper of Koch et al., the first approach does preserve the type I error for any sample size, as the P-values can be reported in an exact manner (Statist. Med. 1998; 17: 1863-1892). Finally, we propose a correction factor for Koch's test statistic that better preserves the type I error.
科赫等人最近(1998年)提出了两种协变量调整方法,用于在随机临床试验中比较连续、有序和二元反应(《统计医学》,1998年;17:1863 - 1892)。第一种是随机化方法,而第二种假设该研究是总体的一个样本。在此,我们研究第二种方法,并考虑两种治疗的最简单情况,一种是具有连续反应,另一种是具有二元反应。对于连续反应,将科赫的第二种方法与经典的协方差分析(ANCOVA)进行比较。从这种关系中我们证明,科赫的方法不能保持I型错误的概率。对连续反应以及二元结果的模拟证实了上述关于在无治疗效果的原假设下科赫方法性能的理论结果。然而,这仅对相对较小到中等样本量构成问题。此外,正如科赫等人的原始论文中所规定的,第一种方法对于任何样本量都能保持I型错误,因为P值可以精确报告(《统计医学》,1998年;17:1863 - 1892)。最后,我们为科赫的检验统计量提出了一个校正因子,能更好地保持I型错误。