Strajbl Marek, Shurki Avital, Warshel Arieh
Department of Chemistry, University of Southern California, Los Angeles, CA 90098-1062, USA.
Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14834-9. doi: 10.1073/pnas.2436328100. Epub 2003 Dec 1.
F1-ATPase is the catalytic component of the ATP synthase molecular machine responsible for most of the uphill synthesis of ATP in living systems. The enormous advances in biochemical and structural studies of this machine provide an opportunity for detailed understanding of the nature of its rotary mechanism. However, further quantitative progress in this direction requires development of reliable ways of translating the observed structural changes to the corresponding energies. This requirement is particularly challenging because we are dealing with a large system that couples major structural changes with a chemical process. The present work provides such a structure-function correlation by using the linear response approximation to describe the rotary mechanism. This approach allows one to evaluate the energy of transitions between different conformational states by considering only the changes in the corresponding electrostatic energies of the ligands. The relevant energetics are also obtained by calculating the linear response approximation-based free energies of transferring the ligands from water to the different sites of F1-ATPase in their different conformational states. We also use the empirical valence bond approach to evaluate the actual free-energy profile for the ATP synthesis in the different conformational states of the system. Integrating the information from the different approaches provides a semiquantitative structure-function correlation for F1-ATPase. It is found that the conformational changes are converted to changes in the electrostatic interaction between the protein and its ligands, which drives the ATP synthesis.
F1 - ATP合酶是ATP合酶分子机器的催化组件,负责生物系统中大部分ATP的耗能合成。对该分子机器进行生化和结构研究取得的巨大进展,为详细了解其旋转机制的本质提供了契机。然而,要在这个方向上取得进一步的定量进展,需要开发可靠的方法,将观察到的结构变化转化为相应的能量。这一要求极具挑战性,因为我们面对的是一个将重大结构变化与化学过程相耦合的大系统。本研究通过使用线性响应近似来描述旋转机制,提供了这样一种结构 - 功能相关性。这种方法使人们能够仅通过考虑配体相应静电能的变化,来评估不同构象状态之间转变的能量。相关能量学还通过计算基于线性响应近似的配体从水转移到处于不同构象状态的F1 - ATP合酶不同位点的自由能来获得。我们还使用经验价键方法来评估系统不同构象状态下ATP合成的实际自由能分布。整合来自不同方法的信息,为F1 - ATP合酶提供了一种半定量的结构 - 功能相关性。研究发现,构象变化转化为蛋白质与其配体之间静电相互作用的变化,从而驱动ATP的合成。