Limbert Georges, Middleton John, Laizans Janis, Dobelis Modris, Knets Ivar
Biomechanics Research Unit, The Cardiff Medicentre, UWCM, Cardiff C 4UJ, UK.
Comput Methods Biomech Biomed Engin. 2003 Oct-Dec;6(5-6):337-45. doi: 10.1080/10255840310001637572.
This study describes the development of a constitutive law for the modelling of the periodontal ligament (PDL) and its practical implementation into a commercial finite element code. The constitutive equations encompass the essential mechanical features of this biological soft tissue: non-linear behaviour, large deformations, anisotropy, distinct behaviour in tension and compression and the fibrous characteristics. The approach is based on the theory of continuum fibre-reinforced composites at finite strain where a compressible transversely isotropic hyperelastic strain energy function is defined. This strain energy density function is further split into volumetric and deviatoric contributions separating the bulk and shear responses of the material. Explicit expressions of the stress tensors in the material and spatial configurations are first established followed by original expressions of the elasticity tensors in the material and spatial configurations. As a simple application of the constitutive model, two finite element analyses simulating the mechanical behaviour of the PDL are performed. The results highlight the significance of integrating the fibrous architecture of the PDL as this feature is shown to be responsible for the complex strain distribution observed.
本研究描述了一种用于牙周膜(PDL)建模的本构定律的发展及其在商业有限元代码中的实际实现。本构方程涵盖了这种生物软组织的基本力学特性:非线性行为、大变形、各向异性、拉伸和压缩时的不同行为以及纤维特性。该方法基于有限应变下的连续纤维增强复合材料理论,其中定义了一个可压缩的横观各向同性超弹性应变能函数。该应变能密度函数进一步分为体积贡献和偏量贡献,以分离材料的体积和剪切响应。首先建立了材料和空间构型中应力张量的显式表达式,随后给出了材料和空间构型中弹性张量的原始表达式。作为本构模型的一个简单应用,进行了两个模拟PDL力学行为的有限元分析。结果突出了整合PDL纤维结构的重要性,因为这一特征被证明是观察到的复杂应变分布的原因。