Zhao Hongyong
Department of Mathematics, Xinjiang Normal University, Urumqi 830054, People's Republic of China.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Nov;68(5 Pt 1):051909. doi: 10.1103/PhysRevE.68.051909. Epub 2003 Nov 25.
In this paper, a model describing the dynamics of recurrent neural networks with distributed delays is considered. Some sufficient criteria are derived ensuring the global asymptotic stability of distributed-delay recurrent neural networks with more general signal propagation functions by introducing real parameters p>1, q(ij)>0, and r(jj)>0, i,j=1, em leader,n, and applying the properties of the M matrix and inequality techniques. We do not assume that the signal propagation functions satisfy the Lipschitz condition and do not require them to be bounded, differentiable, or strictly increasing. Moreover, the symmetry of the connection matrix is also not necessary. These criteria are independent of the delays and possess infinitely adjustable real parameters, which is important in signal processing, especially in moving image treatment and the design of networks.
本文考虑了一个描述具有分布时滞的递归神经网络动力学的模型。通过引入实参数(p>1),(q(ij)>0)和(r(jj)>0)((i,j = 1,\cdots,n)),并应用(M)矩阵的性质和不等式技术,推导了一些充分准则,以确保具有更一般信号传播函数的分布时滞递归神经网络的全局渐近稳定性。我们不假设信号传播函数满足利普希茨条件,也不要求它们有界、可微或严格递增。此外,连接矩阵的对称性也不是必需的。这些准则与延迟无关,并且拥有无限可调的实参数,这在信号处理中,特别是在运动图像处理和网络设计中非常重要。