Benucci Andrea, Verschure Paul F M J, König Peter
Institute of Neuroinformatics University & ETH Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Oct;68(4 Pt 1):041905. doi: 10.1103/PhysRevE.68.041905. Epub 2003 Oct 8.
Neurons collect signals originating from a large number of other cells. The variability of this integrated population activity at the millisecond time scale is a critical constraint on the degree of signal integration and processing performed by single neurons. Optical imaging, EEG, and fMRI studies have indicated that cortical activity shows a high degree of variability at a time scale of hundreds of ms. However, currently no experimental methods are available to directly assess the variability in the activity of populations of neurons at a time scale closer to that of the characteristic time constants of neurons, i.e., around 10 ms. Here we integrate pertinent experimental data in one rigorous mathematical framework to demonstrate that (1) the high temporal variability in the spiking activity of individual neurons, (2) the second-order correlation properties of the spiking activity of cortical neurons, and (3) the correlations of the subthreshold dynamics, all impose high amplitude, fast variability in the population activity of cortical neurons. This implies that higher order correlations, a necessary condition for temporal coding models, must be a central feature of cortical dynamics.
神经元收集来自大量其他细胞的信号。在毫秒时间尺度上,这种整合后的群体活动的变异性是对单个神经元进行信号整合和处理程度的关键限制。光学成像、脑电图和功能磁共振成像研究表明,在数百毫秒的时间尺度上,皮层活动表现出高度的变异性。然而,目前尚无实验方法可直接评估在更接近神经元特征时间常数(即约10毫秒)的时间尺度上神经元群体活动的变异性。在此,我们将相关实验数据整合到一个严谨的数学框架中,以证明:(1)单个神经元放电活动中的高时间变异性;(2)皮层神经元放电活动的二阶相关特性;(3)阈下动力学的相关性,都会使皮层神经元群体活动产生高幅度、快速的变异性。这意味着高阶相关性作为时间编码模型的必要条件,必定是皮层动力学的核心特征。