Suppr超能文献

利用荧光共振能量转移(FRET)和荧光寿命成像显微镜(FLIM)对活细胞和组织中的蛋白质进行定位

Protein localization in living cells and tissues using FRET and FLIM.

作者信息

Chen Ye, Mills James D, Periasamy Ammasi

机构信息

W.M. Keck Center for Cellular Imaging University of Virginia Charlottesville, VA 22904, USA.

出版信息

Differentiation. 2003 Dec;71(9-10):528-41. doi: 10.1111/j.1432-0436.2003.07109007.x.

Abstract

Interacting proteins assemble into molecular machines that control cellular homeostasis in living cells. While the in vitro screening methods have the advantage of providing direct access to the genetic information encoding unknown protein partners, they do not allow direct access to interactions of these protein partners in their natural environment inside the living cell. Using wide-field, confocal, or two-photon (2p) fluorescence resonance energy transfer (FRET) microscopy, this information can be obtained from living cells and tissues with nanometer resolution. One of the important conditions for FRET to occur is the overlap of the emission spectrum of the donor with the absorption spectrum of the acceptor. As a result of spectral overlap, the FRET signal is always contaminated by donor emission into the acceptor channel and by the excitation of acceptor molecules by the donor excitation wavelength. Mathematical algorithms are required to correct the spectral bleed-through signal in wide-field, confocal, and two-photon FRET microscopy. In contrast, spectral bleed-through is not an issue in FRET/FLIM imaging because only the donor fluorophore lifetime is measured; also, fluorescence lifetime imaging microscopy (FLIM) measurements are independent of excitation intensity or fluorophore concentration. The combination of FRET and FLIM provides high spatial (nanometer) and temporal (nanosecond) resolution when compared to intensity-based FRET imaging. In this paper, we describe various FRET microscopy techniques and its application to protein-protein interactions.

摘要

相互作用的蛋白质组装成分子机器,控制活细胞中的细胞内稳态。虽然体外筛选方法具有直接获取编码未知蛋白质伴侣的遗传信息的优势,但它们无法直接获取这些蛋白质伴侣在活细胞内自然环境中的相互作用。使用宽场、共聚焦或双光子(2p)荧光共振能量转移(FRET)显微镜,可以从活细胞和组织中以纳米分辨率获得这些信息。FRET发生的一个重要条件是供体的发射光谱与受体的吸收光谱重叠。由于光谱重叠,FRET信号总是受到供体发射到受体通道以及供体激发波长对受体分子的激发的污染。在宽场、共聚焦和双光子FRET显微镜中,需要数学算法来校正光谱渗漏信号。相比之下,光谱渗漏在FRET/荧光寿命成像(FLIM)中不是问题,因为只测量供体荧光团的寿命;此外,荧光寿命成像显微镜(FLIM)测量与激发强度或荧光团浓度无关。与基于强度的FRET成像相比,FRET和FLIM的结合提供了高空间(纳米)和时间(纳秒)分辨率。在本文中,我们描述了各种FRET显微镜技术及其在蛋白质-蛋白质相互作用中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验