Møller-Jensen Jakob, Borch Jonas, Dam Mette, Jensen Rasmus B, Roepstorff Peter, Gerdes Kenn
Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
Mol Cell. 2003 Dec;12(6):1477-87. doi: 10.1016/s1097-2765(03)00451-9.
Bacterial DNA segregation takes place in an active and ordered fashion. In the case of Escherichia coli plasmid R1, the partitioning system (par) separates paired plasmid copies and moves them to opposite cell poles. Here we address the mechanism by which the three components of the R1 par system act together to generate the force required for plasmid movement during segregation. ParR protein binds cooperatively to the centromeric parC DNA region, thereby forming a complex that interacts with the filament-forming actin-like ParM protein in an ATP-dependent manner, suggesting that plasmid movement is powered by insertional polymerization of ParM. Consistently, we find that segregating plasmids are positioned at the ends of extending ParM filaments. Thus, the process of R1 plasmid segregation in E. coli appears to be mechanistically analogous to the actin-based motility operating in eukaryotic cells. In addition, we find evidence suggesting that plasmid pairing is required for ParM polymerization.
细菌DNA分离以一种活跃且有序的方式进行。就大肠杆菌质粒R1而言,分区系统(par)分离配对的质粒拷贝,并将它们移动到细胞的相对两极。在此,我们探讨了R1 par系统的三个组分共同作用以产生质粒分离过程中移动所需力的机制。ParR蛋白协同结合到着丝粒parC DNA区域,从而形成一个复合物,该复合物以ATP依赖的方式与形成细丝的肌动蛋白样ParM蛋白相互作用,这表明质粒移动由ParM的插入聚合提供动力。一致地,我们发现正在分离的质粒位于延伸的ParM细丝的末端。因此,大肠杆菌中R1质粒的分离过程在机制上似乎类似于真核细胞中基于肌动蛋白的运动。此外,我们发现有证据表明ParM聚合需要质粒配对。