Suppr超能文献

周期延迟神经网络的动力学

Dynamics of periodic delayed neural networks.

作者信息

Zhou Jin, Liu Zengrong, Chen Guanrong

机构信息

Department of Applied Mathematics, Hebei University of Technology, Tianjin 300130, China.

出版信息

Neural Netw. 2004 Jan;17(1):87-101. doi: 10.1016/S0893-6080(03)00208-9.

Abstract

This paper formulates and studies a model of periodic delayed neural networks. This model can well describe many practical architectures of delayed neural networks, which is generalization of some additive delayed neural networks such as delayed Hopfield neural networks and delayed cellular neural networks, under a time-varying environment, particularly when the network parameters and input stimuli are varied periodically with time. Without assuming the smoothness, monotonicity and boundedness of the activation functions, the two functional issues on neuronal dynamics of this periodic networks, i.e. the existence and global exponential stability of its periodic solutions, are investigated. Some explicit and conclusive results are established, which are natural extension and generalization of the corresponding results existing in the literature. Furthermore, some examples and simulations are presented to illustrate the practical nature of the new results.

摘要

本文提出并研究了一种周期延迟神经网络模型。该模型能够很好地描述许多实际的延迟神经网络结构,它是一些加法延迟神经网络(如延迟霍普菲尔德神经网络和延迟细胞神经网络)在时变环境下的推广,特别是当网络参数和输入激励随时间周期性变化时。在不假设激活函数的光滑性、单调性和有界性的情况下,研究了该周期网络神经元动力学的两个功能问题,即其周期解的存在性和全局指数稳定性。建立了一些明确且具有结论性的结果,这些结果是文献中相应结果的自然扩展和推广。此外,还给出了一些例子和仿真来说明新结果的实际性质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验