Li Na, Stephens Matthew
Department of Biostatistics, University of Washington, Seattle, Washington 98195, USA.
Genetics. 2003 Dec;165(4):2213-33. doi: 10.1093/genetics/165.4.2213.
We introduce a new statistical model for patterns of linkage disequilibrium (LD) among multiple SNPs in a population sample. The model overcomes limitations of existing approaches to understanding, summarizing, and interpreting LD by (i) relating patterns of LD directly to the underlying recombination process; (ii) considering all loci simultaneously, rather than pairwise; (iii) avoiding the assumption that LD necessarily has a "block-like" structure; and (iv) being computationally tractable for huge genomic regions (up to complete chromosomes). We examine in detail one natural application of the model: estimation of underlying recombination rates from population data. Using simulation, we show that in the case where recombination is assumed constant across the region of interest, recombination rate estimates based on our model are competitive with the very best of current available methods. More importantly, we demonstrate, on real and simulated data, the potential of the model to help identify and quantify fine-scale variation in recombination rate from population data. We also outline how the model could be useful in other contexts, such as in the development of more efficient haplotype-based methods for LD mapping.
我们引入了一种新的统计模型,用于研究群体样本中多个单核苷酸多态性(SNP)之间的连锁不平衡(LD)模式。该模型克服了现有方法在理解、总结和解释LD方面的局限性,具体表现为:(i)将LD模式直接与潜在的重组过程相关联;(ii)同时考虑所有位点,而非两两成对考虑;(iii)避免了LD必然具有“块状”结构的假设;(iv)对于巨大的基因组区域(直至完整染色体)在计算上易于处理。我们详细研究了该模型的一个自然应用:从群体数据估计潜在的重组率。通过模拟,我们表明,在假设感兴趣区域内重组率恒定的情况下,基于我们模型的重组率估计与当前最佳可用方法具有竞争力。更重要的是,我们在真实数据和模拟数据上都证明了该模型有助于从群体数据中识别和量化重组率的精细尺度变异的潜力。我们还概述了该模型在其他情况下的有用性,例如在开发更高效的基于单倍型的LD映射方法方面。