Suppr超能文献

希顿:一种用于最优变量选择的新型马尔可夫毯算法。

HITON: a novel Markov Blanket algorithm for optimal variable selection.

作者信息

Aliferis C F, Tsamardinos I, Statnikov A

机构信息

Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA.

出版信息

AMIA Annu Symp Proc. 2003;2003:21-5.

Abstract

UNLABELLED

We introduce a novel, sound, sample-efficient, and highly-scalable algorithm for variable selection for classification, regression and prediction called HITON. The algorithm works by inducing the Markov Blanket of the variable to be classified or predicted. A wide variety of biomedical tasks with different characteristics were used for an empirical evaluation. Namely, (i) bioactivity prediction for drug discovery, (ii) clinical diagnosis of arrhythmias, (iii) bibliographic text categorization, (iv) lung cancer diagnosis from gene expression array data, and (v) proteomics-based prostate cancer detection. State-of-the-art algorithms for each domain were selected for baseline comparison.

RESULTS

(1) HITON reduces the number of variables in the prediction models by three orders of magnitude relative to the original variable set while improving or maintaining accuracy. (2) HITON outperforms the baseline algorithms by selecting more than two orders-of-magnitude smaller variable sets than the baselines, in the selected tasks and datasets.

摘要

未标注

我们介绍了一种用于分类、回归和预测的变量选择的新颖、合理、样本高效且高度可扩展的算法,称为HITON。该算法通过诱导要分类或预测的变量的马尔可夫毯来工作。使用了具有不同特征的各种生物医学任务进行实证评估。具体而言,(i)药物发现的生物活性预测,(ii)心律失常的临床诊断,(iii)文献文本分类,(iv)从基因表达阵列数据进行肺癌诊断,以及(v)基于蛋白质组学的前列腺癌检测。为进行基线比较,为每个领域选择了最先进的算法。

结果

(1)相对于原始变量集,HITON在预测模型中减少了三个数量级的变量数量,同时提高或保持了准确性。(2)在选定的任务和数据集中,HITON通过选择比基线小两个数量级以上的变量集,优于基线算法。

相似文献

3
Markov Blanket Feature Selection Using Representative Sets.基于代表性集合的马尔可夫毯特征选择。
IEEE Trans Neural Netw Learn Syst. 2017 Nov;28(11):2775-2788. doi: 10.1109/TNNLS.2016.2602365.
5
Wrapper-based gene selection with Markov blanket.基于马尔可夫毯的包装法基因选择
Comput Biol Med. 2017 Feb 1;81:11-23. doi: 10.1016/j.compbiomed.2016.12.002. Epub 2016 Dec 5.
7
A Markov blanket-based method for detecting causal SNPs in GWAS.基于马尔可夫毯的 GWAS 中因果 SNP 检测方法。
BMC Bioinformatics. 2010 Apr 29;11 Suppl 3(Suppl 3):S5. doi: 10.1186/1471-2105-11-S3-S5.
8
Structure-based variable selection for survival data.基于结构的生存数据分析中的变量选择。
Bioinformatics. 2010 Aug 1;26(15):1887-94. doi: 10.1093/bioinformatics/btq261. Epub 2010 Jun 2.

引用本文的文献

3
Predicting length of stay ranges by using novel deep neural networks.使用新型深度神经网络预测住院时间范围。
Heliyon. 2023 Feb 9;9(2):e13573. doi: 10.1016/j.heliyon.2023.e13573. eCollection 2023 Feb.
8
Exact Learning Augmented Naive Bayes Classifier.精确学习增强朴素贝叶斯分类器
Entropy (Basel). 2021 Dec 20;23(12):1703. doi: 10.3390/e23121703.
9
Predicting online participation through Bayesian network analysis.贝叶斯网络分析预测在线参与度。
PLoS One. 2021 Dec 23;16(12):e0261663. doi: 10.1371/journal.pone.0261663. eCollection 2021.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验