Popov Evgeny, Chernov Boris, Nevière Michel, Bonod Nicolas
Institut Fresnel, Unité Mixte de Recherche Associée au Centre National de la Recherche Scientifique, Faculté des Sciences et Techniques de St.-Jérôme, Marseille Cedex 20, France.
J Opt Soc Am A Opt Image Sci Vis. 2004 Feb;21(2):199-206. doi: 10.1364/josaa.21.000199.
The recently developed fast Fourier factorization method, which has greatly improved the application range of the differential theory of gratings, suffers from numerical instability when applied to metallic gratings with very low losses. This occurs when the real part of the refractive index is small, in particular, smaller than 0.1-0.2, for example, when silver and gold gratings are analyzed in the infrared region. This failure can be attributed to Li's "inverse rule" [L. Li, J. Opt. Soc. Am. A 13, 1870 (1996)] as shown by studying the condition number of matrices that have to be inverted. Two ways of overcoming the difficulty are explored: first, an additional truncation of the matrices containing the coefficients of the differential system, which reduces the numerical problems in some cases, and second, an introduction of lossier material inside the bulk, thus leaving only a thin layer of the highly conducting metal. If the layer is sufficiently thick, this does not change the optical properties of the system but significantly improves the convergence of the differential theory, including the rigorous coupled-wave method, for various types of grating profiles.
最近开发的快速傅里叶分解方法极大地扩展了光栅微分理论的应用范围,但在应用于低损耗金属光栅时存在数值不稳定性。当折射率的实部较小时,特别是小于0.1 - 0.2时,就会出现这种情况,例如在红外区域分析银和金光栅时。通过研究必须求逆矩阵的条件数可知,这种失效可归因于李的“反演规则”[L. Li, J. Opt. Soc. Am. A 13, 1870 (1996)]。本文探索了两种克服该困难的方法:第一,对包含微分系统系数的矩阵进行额外截断,这在某些情况下可减少数值问题;第二,在主体内部引入损耗更大的材料,从而仅保留一层高导电金属薄层。如果该层足够厚,这不会改变系统的光学特性,但会显著提高微分理论(包括严格耦合波方法)对于各种类型光栅轮廓的收敛性。