Skiniotis Georgios, Cochran Jared C, Müller Jens, Mandelkow Eckhard, Gilbert Susan P, Hoenger Andreas
European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany.
EMBO J. 2004 Mar 10;23(5):989-99. doi: 10.1038/sj.emboj.7600118. Epub 2004 Feb 19.
The flexible tubulin C-terminal tails (CTTs) have recently been implicated in the walking mechanism of dynein and kinesin. To address their role in the case of conventional kinesin, we examined the structure of kinesin-microtubule (MT) complexes before and after CTT cleavage by subtilisin. Our results show that the CTTs directly modulate the motor-tubulin interface and the binding properties of motors. CTT cleavage increases motor binding stability, and kinesin appears to adopt a binding conformation close to the nucleotide-free configuration under most nucleotide conditions. Moreover, C-terminal cleavage results in trapping a transient motor-ADP-MT intermediate. Using SH3-tagged dimeric and monomeric constructs, we could also show that the position of the kinesin neck is not affected by the C-terminal segments of tubulin. Overall, our study reveals that the tubulin C-termini define the stability of the MT-kinesin complex in a nucleotide-dependent manner, and highlights the involvement of tubulin in the regulation of weak and strong kinesin binding states.
柔性微管蛋白C末端尾巴(CTT)最近被认为与动力蛋白和驱动蛋白的行走机制有关。为了研究它们在传统驱动蛋白中的作用,我们通过枯草杆菌蛋白酶切割CTT前后,研究了驱动蛋白-微管(MT)复合物的结构。我们的结果表明,CTT直接调节马达蛋白与微管蛋白的界面以及马达蛋白的结合特性。CTT切割增加了马达蛋白的结合稳定性,并且在大多数核苷酸条件下,驱动蛋白似乎采用接近无核苷酸构象的结合构象。此外,C末端切割导致捕获一个短暂的马达蛋白-ADP-MT中间体。使用带有SH3标签的二聚体和单体构建体,我们还可以表明驱动蛋白颈部的位置不受微管蛋白C末端片段的影响。总体而言,我们的研究表明,微管蛋白C末端以核苷酸依赖的方式定义了MT-驱动蛋白复合物的稳定性,并突出了微管蛋白在调节驱动蛋白弱结合和强结合状态中的作用。