Suppr超能文献

微管蛋白C末端对驱动蛋白结合的调节作用。

Modulation of kinesin binding by the C-termini of tubulin.

作者信息

Skiniotis Georgios, Cochran Jared C, Müller Jens, Mandelkow Eckhard, Gilbert Susan P, Hoenger Andreas

机构信息

European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany.

出版信息

EMBO J. 2004 Mar 10;23(5):989-99. doi: 10.1038/sj.emboj.7600118. Epub 2004 Feb 19.

Abstract

The flexible tubulin C-terminal tails (CTTs) have recently been implicated in the walking mechanism of dynein and kinesin. To address their role in the case of conventional kinesin, we examined the structure of kinesin-microtubule (MT) complexes before and after CTT cleavage by subtilisin. Our results show that the CTTs directly modulate the motor-tubulin interface and the binding properties of motors. CTT cleavage increases motor binding stability, and kinesin appears to adopt a binding conformation close to the nucleotide-free configuration under most nucleotide conditions. Moreover, C-terminal cleavage results in trapping a transient motor-ADP-MT intermediate. Using SH3-tagged dimeric and monomeric constructs, we could also show that the position of the kinesin neck is not affected by the C-terminal segments of tubulin. Overall, our study reveals that the tubulin C-termini define the stability of the MT-kinesin complex in a nucleotide-dependent manner, and highlights the involvement of tubulin in the regulation of weak and strong kinesin binding states.

摘要

柔性微管蛋白C末端尾巴(CTT)最近被认为与动力蛋白和驱动蛋白的行走机制有关。为了研究它们在传统驱动蛋白中的作用,我们通过枯草杆菌蛋白酶切割CTT前后,研究了驱动蛋白-微管(MT)复合物的结构。我们的结果表明,CTT直接调节马达蛋白与微管蛋白的界面以及马达蛋白的结合特性。CTT切割增加了马达蛋白的结合稳定性,并且在大多数核苷酸条件下,驱动蛋白似乎采用接近无核苷酸构象的结合构象。此外,C末端切割导致捕获一个短暂的马达蛋白-ADP-MT中间体。使用带有SH3标签的二聚体和单体构建体,我们还可以表明驱动蛋白颈部的位置不受微管蛋白C末端片段的影响。总体而言,我们的研究表明,微管蛋白C末端以核苷酸依赖的方式定义了MT-驱动蛋白复合物的稳定性,并突出了微管蛋白在调节驱动蛋白弱结合和强结合状态中的作用。

相似文献

1
Modulation of kinesin binding by the C-termini of tubulin.
EMBO J. 2004 Mar 10;23(5):989-99. doi: 10.1038/sj.emboj.7600118. Epub 2004 Feb 19.
2
A new look at the microtubule binding patterns of dimeric kinesins.
J Mol Biol. 2000 Apr 14;297(5):1087-103. doi: 10.1006/jmbi.2000.3627.
3
The yeast kinesin-5 Cin8 interacts with the microtubule in a noncanonical manner.
J Biol Chem. 2017 Sep 1;292(35):14680-14694. doi: 10.1074/jbc.M117.797662. Epub 2017 Jul 12.
4
The E-hook of tubulin interacts with kinesin's head to increase processivity and speed.
Biophys J. 2005 Nov;89(5):3223-34. doi: 10.1529/biophysj.104.057505. Epub 2005 Aug 12.
6
An ATP gate controls tubulin binding by the tethered head of kinesin-1.
Science. 2007 Apr 6;316(5821):120-3. doi: 10.1126/science.1136985.
8
Nucleotide-dependent structural changes in dimeric NCD molecules complexed to microtubules.
J Mol Biol. 1998 May 1;278(2):389-400. doi: 10.1006/jmbi.1998.1709.
10
The Contribution of the C-Terminal Tails of Microtubules in Altering the Force Production Specifications of Multiple Kinesin-1.
Cell Biochem Biophys. 2016 Sep;74(3):373-80. doi: 10.1007/s12013-016-0756-3. Epub 2016 Aug 9.

引用本文的文献

1
Tether-scanning the kinesin motor domain reveals a core mechanical action.
Proc Natl Acad Sci U S A. 2024 Jul 23;121(30):e2403739121. doi: 10.1073/pnas.2403739121. Epub 2024 Jul 16.
2
A structural and dynamic visualization of the interaction between MAP7 and microtubules.
Nat Commun. 2024 Mar 2;15(1):1948. doi: 10.1038/s41467-024-46260-5.
4
Tubulin polyglutamylation differentially regulates microtubule-interacting proteins.
EMBO J. 2023 Mar 1;42(5):e112101. doi: 10.15252/embj.2022112101. Epub 2023 Jan 13.
5
Cholesterol in the cargo membrane amplifies tau inhibition of kinesin-1-based transport.
Proc Natl Acad Sci U S A. 2023 Jan 17;120(3):e2212507120. doi: 10.1073/pnas.2212507120. Epub 2023 Jan 10.
6
Structural visualization of the tubulin folding pathway directed by human chaperonin TRiC/CCT.
Cell. 2022 Dec 8;185(25):4770-4787.e20. doi: 10.1016/j.cell.2022.11.014.
7
How COVID-19 Hijacks the Cytoskeleton: Therapeutic Implications.
Life (Basel). 2022 May 30;12(6):814. doi: 10.3390/life12060814.
8
9
Expression Patterns and Levels of All Tubulin Isotypes Analyzed in GFP Knock-In C. elegans Strains.
Cell Struct Funct. 2021 Jun 30;46(1):51-64. doi: 10.1247/csf.21022. Epub 2021 May 8.
10
Defective Mitochondrial Dynamics Underlie Manganese-Induced Neurotoxicity.
Mol Neurobiol. 2021 Jul;58(7):3270-3289. doi: 10.1007/s12035-021-02341-w. Epub 2021 Mar 5.

本文引用的文献

1
Configuration of the two kinesin motor domains during ATP hydrolysis.
Nat Struct Biol. 2003 Oct;10(10):836-42. doi: 10.1038/nsb984. Epub 2003 Sep 14.
2
Processivity of the single-headed kinesin KIF1A through biased binding to tubulin.
Nature. 2003 Jul 31;424(6948):574-7. doi: 10.1038/nature01804.
3
Nucleotide-induced conformations in the neck region of dimeric kinesin.
EMBO J. 2003 Apr 1;22(7):1518-28. doi: 10.1093/emboj/cdg164.
4
Motor domain mutation traps kinesin as a microtubule rigor complex.
Biochemistry. 2003 Mar 11;42(9):2595-606. doi: 10.1021/bi026715r.
5
The molecular motor toolbox for intracellular transport.
Cell. 2003 Feb 21;112(4):467-80. doi: 10.1016/s0092-8674(03)00111-9.
6
Repeat motifs of tau bind to the insides of microtubules in the absence of taxol.
EMBO J. 2003 Jan 2;22(1):70-7. doi: 10.1093/emboj/cdg001.
7
Microtubule structure at 8 A resolution.
Structure. 2002 Oct;10(10):1317-28. doi: 10.1016/s0969-2126(02)00827-4.
8
Single-molecule investigation of the interference between kinesin, tau and MAP2c.
EMBO J. 2002 Sep 16;21(18):4896-905. doi: 10.1093/emboj/cdf503.
9
MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments.
J Cell Biol. 2002 Jun 24;157(7):1187-96. doi: 10.1083/jcb.200201048.
10
A mechanism for microtubule depolymerization by KinI kinesins.
Mol Cell. 2002 Apr;9(4):903-9. doi: 10.1016/s1097-2765(02)00503-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验