Anderson H Clarke, Sipe Joseph B, Hessle Lovisa, Dhanyamraju Rama, Atti Elisa, Camacho Nancy P, Millán José Luis, Dhamyamraju Rama
Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
Am J Pathol. 2004 Mar;164(3):841-7. doi: 10.1016/s0002-9440(10)63172-0.
The presence of skeletal hypomineralization was confirmed in mice lacking the gene for bone alkaline phosphatase, ie, the tissue-non-specific isozyme of alkaline phosphatase (TNAP). In this study, a detailed characterization of the ultrastructural localization, the relative amount and ultrastructural morphology of bone mineral was carried out in tibial growth plates and in subjacent metaphyseal bone of 10-day-old TNAP knockout mice. Alizarin red staining, microcomputerized tomography (micro CT), and FTIR imaging spectroscopy (FT-IRIS) confirmed a significant overall decrease of mineral density in the cartilage and bone matrix of TNAP-deficient mice. Transmission electron microscopy (TEM) showed diminished mineral in growth plate cartilage and in newly formed bone matrix. High resolution TEM indicated that mineral crystals were initiated, as is normal, within matrix vesicles (MVs) of the growth plate and bone of TNAP-deficient mice. However, mineral crystal proliferation and growth was inhibited in the matrix surrounding MVs, as is the case in the hereditary human disease hypophosphatasia. These data suggest that hypomineralization in TNAP-deficient mice results primarily from an inability of initial mineral crystals within MVs to self-nucleate and to proliferate beyond the protective confines of the MV membrane. This failure of the second stage of mineral formation may be caused by an excess of the mineral inhibitor pyrophosphate (PPi) in the extracellular fluid around MVs. In normal circumstances, PPi is hydrolyzed by the TNAP of MVs' outer membrane yielding monophosphate ions (Pi) for incorporation into bone mineral. Thus, with TNAP deficiency a buildup of mineral-inhibiting PPi would be expected at the perimeter of MVs.
在缺乏骨碱性磷酸酶基因(即碱性磷酸酶的组织非特异性同工酶(TNAP))的小鼠中,证实了骨骼矿化不足的存在。在本研究中,对10日龄TNAP基因敲除小鼠的胫骨生长板和相邻干骺端骨中骨矿物质的超微结构定位、相对含量和超微结构形态进行了详细表征。茜素红染色、微型计算机断层扫描(micro CT)和傅里叶变换红外成像光谱(FT-IRIS)证实,TNAP缺陷小鼠的软骨和骨基质中的矿物质密度总体显著降低。透射电子显微镜(TEM)显示生长板软骨和新形成的骨基质中的矿物质减少。高分辨率TEM表明,TNAP缺陷小鼠生长板和骨的基质小泡(MVs)内正常启动了矿物晶体的形成。然而,与人类遗传性疾病低磷酸酯酶症一样,MVs周围基质中的矿物晶体增殖和生长受到抑制。这些数据表明,TNAP缺陷小鼠的矿化不足主要是由于MVs内的初始矿物晶体无法自我成核并在MV膜的保护范围之外增殖。矿物形成第二阶段的这种失败可能是由于MVs周围细胞外液中过多的矿物抑制剂焦磷酸(PPi)所致。在正常情况下,PPi被MVs外膜的TNAP水解,产生单磷酸离子(Pi)以掺入骨矿物质中。因此,在TNAP缺乏的情况下,预计在MVs周围会积累抑制矿物的PPi。