Suppr超能文献

Beta-amyloid-activated cell cycle in SH-SY5Y neuroblastoma cells: correlation with the MAP kinase pathway.

作者信息

Frasca Giuseppina, Chiechio Santina, Vancheri Carlo, Nicoletti Ferdinan, Copani Agata, Angela Sortino Maria

机构信息

Departments of Experimental and Clinical Pharmacology, University of Catania, 95125 Catania, Italy.

出版信息

J Mol Neurosci. 2004;22(3):231-6. doi: 10.1385/jmn:22:3:231.

Abstract

Primary cultures of rat cortical neurons exposed to toxic concentrations of beta-amyloid peptide (betaAP) begin an unscheduled mitotic cell cycle that does not progress beyond the S phase. To analyze possible signal transduction pathways involved in this effect, the action of betaAP has been studied in SH-SY5Y neuroblastoma cells differentiated by a 7-d exposure to 10 microM retinoic acid. Treatment with the betaAP fragment, betaAP(25-35), (25 microM) for 24, 48, or 72 h caused apoptotic cell death, detected by flow cytometry as a prediploid cell population. Cell cycle analysis showed that betaAP(25-35) modified cell cycle profiles by markedly increasing the number of cells in the S phase and reducing the population of the G2/M area. These effects seem to involve activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK1/2). Inhibition of this pathway by the specific inhibitor PD98059 (2 microM) completely prevented changes of cell cycle distribution induced by betaAP and significantly reduced neuronal death. The data suggest that MAPK cascade can mediate the induction of cell cycle induced by betaAP, thus contributing to the toxicity of the peptide.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验