Suppr超能文献

基于删失数据对风险函数中的变化点进行估计。

Estimation of a change point in a hazard function based on censored data.

作者信息

Gijbels Irène, Gürler Ulkü

机构信息

Université Catholique de Louvain, Belgium.

出版信息

Lifetime Data Anal. 2003 Dec;9(4):395-411. doi: 10.1023/b:lida.0000012424.71723.9d.

Abstract

The hazard function plays an important role in reliability or survival studies since it describes the instantaneous risk of failure of items at a time point, given that they have not failed before. In some real life applications, abrupt changes in the hazard function are observed due to overhauls, major operations or specific maintenance activities. In such situations it is of interest to detect the location where such a change occurs and estimate the size of the change. In this paper we consider the problem of estimating a single change point in a piecewise constant hazard function when the observed variables are subject to random censoring. We suggest an estimation procedure that is based on certain structural properties and on least squares ideas. A simulation study is carried out to compare the performance of this estimator with two estimators available in the literature: an estimator based on a functional of the Nelson-Aalen estimator and a maximum likelihood estimator. The proposed least squares estimator tums out to be less biased than the other two estimators, but has a larger variance. We illustrate the estimation method on some real data sets.

摘要

风险函数在可靠性或生存研究中起着重要作用,因为它描述了在给定物品之前未失效的情况下,在某一时刻失效的瞬时风险。在一些实际应用中,由于大修、重大操作或特定维护活动,会观察到风险函数的突然变化。在这种情况下,检测这种变化发生的位置并估计变化的大小是很有意义的。在本文中,我们考虑当观测变量受到随机删失时,估计分段常数风险函数中单个变化点的问题。我们提出了一种基于某些结构特性和最小二乘法思想的估计程序。进行了一项模拟研究,以比较该估计器与文献中可用的两种估计器的性能:一种基于纳尔逊 - 艾伦估计器的泛函的估计器和一种最大似然估计器。结果表明,所提出的最小二乘估计器比其他两种估计器的偏差更小,但方差更大。我们在一些实际数据集上说明了估计方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验