Suppr超能文献

Bacterial N-acylhomoserine lactone-induced apoptosis in breast carcinoma cells correlated with down-modulation of STAT3.

作者信息

Li Li, Hooi Doreen, Chhabra Siri Ram, Pritchard David, Shaw Peter E

机构信息

School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.

出版信息

Oncogene. 2004 Jun 17;23(28):4894-902. doi: 10.1038/sj.onc.1207612.

Abstract

Cell growth is promoted by mitogens and survival factors, which activate intracellular signalling pathways to control cell cycle progression and cellular integrity. Proliferation signals are transmitted through Ras and Rho family small G-proteins coupled to mitogen-activated protein kinase (MAPK) cascades, while survival signals are propagated by lipid-dependent kinases such as phosphatidylinositide 3-kinases (PI3Ks) and protein kinase B (Akt/PKB). Recently, signal transducer and activator of transcription (STAT) proteins were identified as positive regulators of proliferation in a variety of cell types. Persistent activation of these pathways is associated with tumour cell growth, whereas their inhibition can halt proliferation and precipitate apoptotic cell death. The human pathogen Pseudomonas aeruginosa uses quorum-sensing signal molecules (QSSMs) to regulate virulence gene expression. QSSMs also suppress host immune responses although the mechanism of suppression is unknown. Here, we demonstrate that the QSSM N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL) from P. aeruginosa blocks proliferation and induces apoptosis in human BC cell lines. Analyses of signalling events reveal that OdDHL has little or no effect on MAPK cascades, partially inhibits the Akt/PKB pathway and ablates STAT3 activity. Pharmacological inhibition of each pathway independently indicates that STAT3 activity is critical for BC cell proliferation and survival, while a constitutively active STAT3 confers resistance to OdDHL. These results support the notion of OdDHL as a bioactive molecule in eukaryotic systems and a paradigm for a novel class of antiproliferative compounds.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验