Azurmendi Hugo F, Wang Susan C, Massiah Michael A, Poelarends Gerrit J, Whitman Christian P, Mildvan Albert S
Department of Biological Chemistry, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA.
Biochemistry. 2004 Apr 13;43(14):4082-91. doi: 10.1021/bi030241u.
trans-3-Chloroacrylic acid dehalogenase (CaaD) converts trans-3-chloroacrylic acid to malonate semialdehyde by the addition of H(2)O to the C-2, C-3 double bond, followed by the loss of HCl from the C-3 position. Sequence similarity between CaaD, an (alphabeta)(3) heterohexamer (molecular weight 47,547), and 4-oxalocrotonate tautomerase (4-OT), an (alpha)(6) homohexamer, distinguishes CaaD from those hydrolytic dehalogenases that form alkyl-enzyme intermediates. The recently solved X-ray structure of CaaD demonstrates that betaPro-1 (i.e., Pro-1 of the beta subunit), alphaArg-8, alphaArg-11, and alphaGlu-52 are at or near the active site, and the >or=10(3.4)-fold decreases in k(cat) on mutating these residues implicate them as mechanistically important. The effect of pH on k(cat)/K(m) indicates a catalytic base with a pK(a) of 7.6 and an acid with a pK(a) of 9.2. NMR titration of (15)N-labeled wild-type CaaD yielded pK(a) values of 9.3 and 11.1 for the N-terminal prolines, while the fully active but unstable alphaP1A mutant showed a pK(a) of 9.7 (for the betaPro-1), implicating betaPro-1 as the acid catalyst, which may protonate C-2 of the substrate. These results provide the first evidence for an amino-terminal proline, conserved in all known tautomerase superfamily members, functioning as a general acid, rather than as a general base as in 4-OT. Hence, a reasonable candidate for the general base in CaaD is the active site residue alphaGlu-52. CaaD has 10 arginine residues, six in the alpha-subunit (Arg-8, Arg-11, Arg-17, Arg-25, Arg-35, and Arg-43), and four in the beta-subunit (Arg-15, Arg-21, Arg-55, and Arg-65). (1)H-(15)N-heteronuclear single quantum coherence (HSQC) spectra of CaaD showed seven to nine Arg-NepsilonH resonances (denoted R(A) to R(I)) depending on the protein concentration and pH. One of these signals (R(D)) disappeared in the spectrum of the largely inactive alphaR11A mutant (deltaH = 7.11 ppm, deltaN = 89.5 ppm), and another one (R(G)) disappeared in the spectrum of the inactive alphaR8A mutant (deltaH = 7.48 ppm, deltaN = 89.6 ppm), thereby assigning these resonances to alphaArg-11NepsilonH, and alphaArg-8NepsilonH, respectively. (1)H-(15)N-HSQC titration of the enzyme with the substrate analogue 3-chloro-2-butenoic acid (3-CBA), a competitive inhibitor (K(I)(slope) = 0.35 +/- 0.06 mM), resulted in progressive downfield shifts of the alphaArg-8Nepsilon resonance yielding a K(D) = 0.77 +/- 0.44 mM, comparable to the (K(I)(slope), suggestive of active site binding. Increasing the pH of free CaaD to 8.9 at 5 degrees C resulted in the disappearance of all nine Arg-NepsilonH resonances due to base-catalyzed NepsilonH exchange. Saturating the enzyme with 3-CBA (16 mM) induced the reappearance of two NepsilonH signals, those of alphaArg-8 and alphaArg-11, indicating that the binding of the substrate analogue 3-CBA selectively slows the NepsilonH exchange rates of these two arginine residues. The kinetic and NMR data thus indicate that betaPro-1 is the acid catalyst, alphaGlu-52 is a reasonable candidate for the general base, and alphaArg-8 and alphaArg-11 participate in substrate binding and in stabilizing the aci-carboxylate intermediate in a Michael addition mechanism.
反式-3-氯丙烯酸脱卤酶(CaaD)通过在C-2、C-3双键上添加H₂O,随后从C-3位失去HCl,将反式-3-氯丙烯酸转化为丙二酸半醛。CaaD是一种(αβ)₃异源六聚体(分子量47,547),与4-草酰巴豆酸互变异构酶(4-OT)(一种α₆同源六聚体)之间的序列相似性,将CaaD与那些形成烷基酶中间体的水解脱卤酶区分开来。最近解析的CaaD的X射线结构表明,βPro-1(即β亚基的Pro-1)、αArg-8、αArg-11和αGlu-52位于活性位点或其附近,并且在突变这些残基时kcat降低≥10³.⁴倍,这表明它们在机制上很重要。pH对kcat/Km的影响表明存在一个pKa为7.6的催化碱和一个pKa为9.2的酸。对¹⁵N标记的野生型CaaD进行NMR滴定,得到N端脯氨酸的pKa值为9.3和11.1,而完全活性但不稳定的αP1A突变体显示pKa为9.7(对于βPro-1),这表明βPro-1是酸催化剂,它可能使底物的C-2质子化。这些结果首次证明了在所有已知的互变异构酶超家族成员中保守的氨基端脯氨酸作为一般酸起作用,而不是像在4-OT中那样作为一般碱。因此,CaaD中一般碱的合理候选者是活性位点残基αGlu-52。CaaD有10个精氨酸残基,6个在α亚基中(Arg-8、Arg-11、Arg-17、Arg-25、Arg-35和Arg-43),4个在β亚基中(Arg-15、Arg-21、Arg-55和Arg-65)。CaaD的¹H-¹⁵N异核单量子相干(HSQC)谱根据蛋白质浓度和pH显示出7至9个Arg-NεH共振(表示为R(A)至R(I))。这些信号之一(R(D))在大部分无活性的αR11A突变体的谱中消失(δH = 7.11 ppm,δN = 89.5 ppm),另一个(R(G))在无活性的αR8A突变体的谱中消失(δH = 7.48 ppm,δN = 89.6 ppm),从而分别将这些共振归属于αArg-11NεH和αArg-8NεH。用底物类似物3-氯-2-丁烯酸(3-CBA)(一种竞争性抑制剂,K(I)(斜率)= 0.35 ± 0.06 mM)对该酶进行¹H-¹⁵N-HSQC滴定,导致αArg-8Nε共振逐渐向低场移动,得到K(D)= 0.77 ± 0.44 mM,与K(I)(斜率)相当,表明存在活性位点结合。在5℃将游离CaaD的pH提高到8.9会导致所有9个Arg-NεH共振由于碱催化的NεH交换而消失。用3-CBA(16 mM)使酶饱和会诱导两个NεH信号重新出现,即αArg-8和αArg-11的信号,这表明底物类似物3-CBA的结合选择性地减慢了这两个精氨酸残基的NεH交换速率。因此,动力学和NMR数据表明βPro-1是酸催化剂,αGlu-52是一般碱的合理候选者,并且αArg-8和αArg-11参与底物结合并在迈克尔加成机制中稳定烯醇羧酸盐中间体。