Biferale Luca, Lanotte Alessandra S, Toschi Federico
Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Roma, Italy.
Phys Rev Lett. 2004 Mar 5;92(9):094503. doi: 10.1103/PhysRevLett.92.094503.
We present the results of a numerical investigation of three-dimensional homogeneous and isotropic turbulence, stirred by a random forcing with a power-law spectrum, E(f)(k) approximately k(3-y). Numerical simulations are performed at different resolutions up to 512(3). We show that at varying the spectrum slope y, small-scale turbulent fluctuations change from a forcing independent to a forcing dominated statistics. We argue that the critical value separating the two behaviors, in three dimensions, is y(c)=4. When the statistics is forcing dominated, for y<y(c), we find dimensional scaling, i.e., intermittency is vanishingly small. On the other hand, for y>y(c), we find the same anomalous scaling measured in flows forced only at large scales. We connect these results with the issue of universality in turbulent flows.
我们展示了对三维均匀各向同性湍流进行数值研究的结果,该湍流由具有幂律谱(E(f)(k)\approx k^{3 - y})的随机外力驱动。在高达(512^3)的不同分辨率下进行了数值模拟。我们表明,随着谱斜率(y)的变化,小尺度湍流波动从与外力无关的统计特性转变为外力主导的统计特性。我们认为,在三维空间中,区分这两种行为的临界值是(y_c = 4)。当统计特性由外力主导时,对于(y < y_c),我们发现了量纲缩放,即间歇性非常小。另一方面,对于(y > y_c),我们发现了与仅在大尺度上受迫流动中测量到的相同的反常缩放。我们将这些结果与湍流中的普遍性问题联系起来。