Panteleev Mikhail A, Saenko Evgueni L, Ananyeva Natalya M, Ataullakhanov Fazoil I
Laboratory of Physical Biochemistry of Blood, National Research Center for Hematology, Russian Academy of Medical Sciences, Novozykovskii pr. 4a, Moscow, 125167, Russia.
Biochem J. 2004 Aug 1;381(Pt 3):779-94. doi: 10.1042/BJ20031748.
Intrinsic tenase consists of activated Factors IX (IXa) and VIII (VIIIa) assembled on a negatively charged phospholipid surface. In vivo, this surface is mainly provided by activated platelets. In vitro, phosphatidylcholine/phosphatidylserine vesicles are often used to mimic natural pro-coagulant membranes. In the present study, we developed a quantitative mathematical model of Factor X activation by intrinsic tenase. We considered two situations, when complex assembly occurs on either the membrane of phospholipid vesicles or the surface of activated platelets. On the basis of existing experimental evidence, the following mechanism for the complex assembly on activated platelets was suggested: (i) Factors IXa, VIIIa and X bind to their specific platelet receptors; (ii) bound factors form complexes on the membrane: platelet-bound Factor VIIIa provides a high-affinity site for Factor X and platelet-bound Factor IXa provides a high-affinity site for Factor VIIIa; (iii) the enzyme-cofactor-substrate complex is assembled. This mechanism allowed the explanation of co-operative effects in the binding of Factors IXa, VIIIa and X to platelets. The model was reduced to obtain a single equation for the Factor X activation rate as a function of concentrations of Factors IXa, VIIIa, X and phospholipids (or platelets). The equation had a Michaelis-Menten form, where apparent V(max) and K(m) were functions of the factors' concentrations and the internal kinetic constants of the system. The equation obtained can be used in both experimental studies of intrinsic tenase and mathematical modelling of the coagulation cascade. The approach of the present study can be applied to research of other membrane-dependent enzymic reactions.
内源性凝血酶原酶由在带负电荷的磷脂表面组装的活化因子IX(IXa)和VIII(VIIIa)组成。在体内,这个表面主要由活化的血小板提供。在体外,磷脂酰胆碱/磷脂酰丝氨酸囊泡常被用来模拟天然促凝膜。在本研究中,我们建立了内源性凝血酶原酶激活因子X的定量数学模型。我们考虑了两种情况,即复合物组装发生在磷脂囊泡膜上或活化血小板表面上。基于现有的实验证据,提出了活化血小板上复合物组装的以下机制:(i)因子IXa、VIIIa和X与其特定的血小板受体结合;(ii)结合的因子在膜上形成复合物:血小板结合的因子VIIIa为因子X提供高亲和力位点,血小板结合的因子IXa为因子VIIIa提供高亲和力位点;(iii)酶-辅因子-底物复合物组装完成。该机制能够解释因子IXa、VIIIa和X与血小板结合中的协同效应。对模型进行简化以获得一个关于因子X激活速率的单一方程,该方程是因子IXa、VIIIa、X和磷脂(或血小板)浓度的函数。该方程具有米氏方程形式,其中表观V(max)和K(m)是因子浓度和系统内部动力学常数的函数。所得到的方程可用于内源性凝血酶原酶的实验研究以及凝血级联反应的数学建模。本研究的方法可应用于其他膜依赖性酶促反应的研究。