Suppr超能文献

作为长期遗传贡献代理指标的个体适合度的单代估计。

Single-generation estimates of individual fitness as proxies for long-term genetic contribution.

作者信息

Brommer Jon E, Gustafsson Lars, Pietiäinen Hannu, Merilä Juha

机构信息

Department of Ecology and Systematics, University of Helsinki, P.O. Box 65 Viikinkaari 1, FIN-00014, Helsinki, Finland.

出版信息

Am Nat. 2004 Apr;163(4):505-17. doi: 10.1086/382547. Epub 2004 Apr 19.

Abstract

Individual fitness is a central evolutionary concept, but the question of how it should be defined in empirical studies of natural selection remains contentious. Using founding cohorts from long-term population studies of two species of individually marked birds (collared flycatcher Ficedula albicollis and Ural owl Strix uralensis), we compared a rate-sensitive (lambdaind) and a rate-insensitive (lifetime reproductive success [LRS]) estimate of individual fitness with an estimate of long-term genetic fitness. The latter was calculated as the number of gene copies present in the population after more than two generations, as estimated by tracing genetic lineages and accounting for the fact that populations were not completely closed. When counting fledglings, rate-insensitive estimates of individual fitness correlated better than rate-sensitive estimates with estimated long-term genetic contribution. When counting recruits, both classes of estimates performed equally well. The results support the contention that simple, rate-insensitive measures of fitness, such as LRS, provide a valid and good estimate of fitness in evolutionary studies of natural populations.

摘要

个体适合度是一个核心的进化概念,但在自然选择的实证研究中应如何定义它,这个问题仍然存在争议。我们利用对两种带有个体标记的鸟类(白领姬鹟Ficedula albicollis和乌林鸮Strix uralensis)进行长期种群研究的初始队列,将个体适合度的一种速率敏感型估计(λind)和一种速率不敏感型估计(终生繁殖成功率[LRS])与长期遗传适合度估计进行了比较。后者的计算方法是,在追踪遗传谱系并考虑到种群并非完全封闭这一事实的情况下,估算经过两代以上后种群中存在的基因拷贝数。在统计雏鸟数量时,个体适合度的速率不敏感型估计与估计的长期遗传贡献的相关性比速率敏感型估计更好。在统计新加入种群的个体时,两类估计的表现同样出色。这些结果支持了这样一种观点,即简单的、速率不敏感型的适合度测量方法,如LRS,在自然种群的进化研究中能对适合度提供有效且良好的估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验