Suppr超能文献

plp突变体中分生组织增大和生长延迟是由于缺乏CaaX异戊二烯基转移酶所致。

Enlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases.

作者信息

Running Mark P, Lavy Meirav, Sternberg Hasana, Galichet Arnaud, Gruissem Wilhelm, Hake Sarah, Ori Naomi, Yalovsky Shaul

机构信息

U.S. Department of Agriculture-Agricultural Research Service Plant Gene Expression Center, Albany, CA 94710, USA.

出版信息

Proc Natl Acad Sci U S A. 2004 May 18;101(20):7815-20. doi: 10.1073/pnas.0402385101. Epub 2004 May 5.

Abstract

Meristems require a myriad of intercellular signaling pathways for coordination of cell division within and between functional zones and clonal cell layers. This control of cell division ensures a constant availability of stem cells throughout the life span of the meristem while limiting overproliferation of meristematic cells and maintaining the meristem structure. We have undertaken a genetic screen to identify additional components of meristem signaling pathways. We identified pluripetala (plp) mutants based on their dramatically larger meristems and increased floral organ number. PLURIPETALA encodes the alpha-subunit shared between protein farnesyltransferase and protein geranylgeranyltransferase-I. plp mutants also have altered abscisic acid responses and overall much slower growth rate. plp is epistatic to mutations in the beta-subunit of farnesyltransferase and shows a synergistic interaction with clavata3 mutants. plp mutants lead to insights into the mechanism of meristem homeostasis and provide a unique in vivo system for studying the functional role of prenylation in eukaryotes.

摘要

分生组织需要无数的细胞间信号通路来协调功能区和克隆细胞层内以及它们之间的细胞分裂。这种对细胞分裂的控制确保了在分生组织的整个生命周期中干细胞的持续供应,同时限制了分生组织细胞的过度增殖并维持分生组织的结构。我们进行了一项遗传筛选,以鉴定分生组织信号通路的其他成分。我们根据其显著更大的分生组织和增加的花器官数量鉴定出多花瓣(plp)突变体。PLURIPETALA编码蛋白质法尼基转移酶和蛋白质香叶基香叶基转移酶-I之间共享的α亚基。plp突变体还具有改变的脱落酸反应以及总体上慢得多的生长速率。plp对法尼基转移酶β亚基的突变具有上位性,并与clavata3突变体表现出协同相互作用。plp突变体有助于深入了解分生组织稳态的机制,并为研究真核生物中异戊二烯化的功能作用提供了一个独特的体内系统。

相似文献

1
Enlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases.
Proc Natl Acad Sci U S A. 2004 May 18;101(20):7815-20. doi: 10.1073/pnas.0402385101. Epub 2004 May 5.
4
Floral meristem size and organ number correlation in Eucryphia (Cunoniaceae).
J Plant Res. 2018 May;131(3):429-441. doi: 10.1007/s10265-018-1030-0. Epub 2018 Mar 22.
6
The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem.
Plant J. 2007 Jan;49(1):64-78. doi: 10.1111/j.1365-313X.2006.02941.x. Epub 2006 Nov 27.
7
Regulation of floral patterning and organ identity by Arabidopsis ERECTA-family receptor kinase genes.
J Exp Bot. 2013 Dec;64(17):5323-33. doi: 10.1093/jxb/ert270. Epub 2013 Sep 4.
8
The vascular plants: open system of growth.
Dev Genes Evol. 2017 Mar;227(2):129-157. doi: 10.1007/s00427-016-0572-1. Epub 2017 Feb 18.
9
Flower development in the asterid lineage.
Methods Mol Biol. 2014;1110:35-55. doi: 10.1007/978-1-4614-9408-9_2.

引用本文的文献

1
Protein Prenylation in Plants: Mechanisms and Functional Implications.
Plants (Basel). 2025 Jun 9;14(12):1759. doi: 10.3390/plants14121759.
2
euAP2a, a key gene that regulates flowering time in peach () by modulating thermo-responsive transcription programming.
Hortic Res. 2024 Apr 8;11(5):uhae076. doi: 10.1093/hr/uhae076. eCollection 2024 May.
4
Positively Regulates Flowering Time, Plant Height, and Main Inflorescence Length in .
Genes (Basel). 2023 Dec 13;14(12):2206. doi: 10.3390/genes14122206.
5
Protein Farnesylation Takes Part in Arabidopsis Seed Development.
Front Plant Sci. 2021 Jan 28;12:620325. doi: 10.3389/fpls.2021.620325. eCollection 2021.
7
Protein Prenylation in Plant Stress Responses.
Molecules. 2019 Oct 30;24(21):3906. doi: 10.3390/molecules24213906.
9
Heat-shock protein 40 is the key farnesylation target in meristem size control, abscisic acid signaling, and drought resistance.
Genes Dev. 2017 Nov 15;31(22):2282-2295. doi: 10.1101/gad.301242.117. Epub 2017 Dec 21.
10
ROP GTPases Structure-Function and Signaling Pathways.
Plant Physiol. 2018 Jan;176(1):57-79. doi: 10.1104/pp.17.01415. Epub 2017 Nov 17.

本文引用的文献

1
Structure of mammalian protein geranylgeranyltransferase type-I.
EMBO J. 2003 Nov 17;22(22):5963-74. doi: 10.1093/emboj/cdg571.
2
AIPL1, a protein implicated in Leber's congenital amaurosis, interacts with and aids in processing of farnesylated proteins.
Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12630-5. doi: 10.1073/pnas.2134194100. Epub 2003 Oct 10.
4
Protein prenyltransferases.
Genome Biol. 2003;4(4):212. doi: 10.1186/gb-2003-4-4-212. Epub 2003 Apr 1.
5
A high-throughput Arabidopsis reverse genetics system.
Plant Cell. 2002 Dec;14(12):2985-94. doi: 10.1105/tpc.004630.
6
A cell-specific, prenylation-independent mechanism regulates targeting of type II RACs.
Plant Cell. 2002 Oct;14(10):2431-50. doi: 10.1105/tpc.005561.
8
Protein farnesyltransferase and protein prenylation in Plasmodium falciparum.
J Biol Chem. 2002 Nov 1;277(44):42066-73. doi: 10.1074/jbc.M202860200. Epub 2002 Aug 22.
10
The Arabidopsis AtSTE24 is a CAAX protease with broad substrate specificity.
J Biol Chem. 2002 Aug 16;277(33):29856-64. doi: 10.1074/jbc.M202916200. Epub 2002 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验