Aradi Ildiko, Santhakumar Vijayalakshmi, Soltesz Ivan
Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-1280, USA.
J Neurophysiol. 2004 Jun;91(6):2849-58. doi: 10.1152/jn.00916.2003.
Previous computational modeling studies suggested a set of rules underlying the modulation of principal cell firing rates by heterogeneity in the synaptic parameters (peak amplitude and decay kinetics) of populations of GABAergic inputs. Here we performed dynamic clamp experiments in CA1 hippocampal pyramidal cells to test these ideas in biological neurons. In agreement with the simulation studies, the effects of increasing the event-to-event variance in a population of perisomatically injected inhibitory postsynaptic current (IPSC) peak conductances caused either an increase, decrease, or no change in the firing rates of CA1 pyramidal cells depending on the mean around which the scatter was introduced, the degree of the scatter, the depolarization that the pyramidal cell received, and the IPSC reversal potential. In contrast to CA1 pyramidal cells, both model and biological CA3 pyramidal cells responded with bursts of action potentials to sudden, step-wise alterations in input heterogeneity. In addition, injections of 40-Hz IPSC conductances together with -modulated depolarizing current inputs to CA1 pyramidal cells demonstrated that the principles underlying the modulation of pyramidal cell excitability by heterogeneous IPSC populations also apply during membrane potential oscillations. Taken together, these experimental results and the computational modeling data show the existence of simple rules governing the interactions of heterogeneous interneuronal inputs and principal cells.
先前的计算模型研究表明,在GABA能输入群体的突触参数(峰值幅度和衰减动力学)异质性的作用下,主细胞放电率的调制存在一组规则。在这里,我们在CA1海马锥体细胞中进行了动态钳实验,以在生物神经元中测试这些观点。与模拟研究一致,在体细胞周围注入的抑制性突触后电流(IPSC)峰值电导群体中,增加事件间方差的影响导致CA1锥体细胞的放电率增加、降低或无变化,这取决于引入散点的均值、散点程度、锥体细胞接受的去极化以及IPSC反转电位。与CA1锥体细胞不同,模型和生物CA3锥体细胞对输入异质性的突然、逐步变化均以动作电位爆发做出反应。此外,向CA1锥体细胞注射40 Hz的IPSC电导以及调制的去极化电流输入表明,异质IPSC群体调制锥体细胞兴奋性的基本原理在膜电位振荡期间也适用。综上所述,这些实验结果和计算模型数据表明存在控制异质中间神经元输入与主细胞相互作用的简单规则。