Suppr超能文献

一个用于估计复发事件半参数模型中转移概率的SAS宏。

A SAS macro for estimating transition probabilities in semiparametric models for recurrent events.

作者信息

Paes Angela Tavares, de Lima Antonio Carlos Pedroso

机构信息

Laboratory of Epidemiology and Statistics, Institute Dante Pazzanese of Cardiology, São Paulo, Brazil.

出版信息

Comput Methods Programs Biomed. 2004 Jul;75(1):59-65. doi: 10.1016/j.cmpb.2003.08.007.

Abstract

In many clinical studies involving event history analysis, the event of interest is non-fatal and may occur more than once for each subject. Models based on the theory of counting processes have been developed to deal with such data, the recurrences being considered as transitions in a Markovian process. Under this setting, the experimental units can move between states over time, and it is possible to estimate the corresponding transition probabilities employing regression models that incorporate the influence of covariates. Despite of this, most of the softwares are concerned only in the estimation of regression parameters and do not provide transition probabilities estimates. The aim of this paper is to present a SAS macro developed to estimate the transition probabilities, considering three approaches for the regression modeling. The macro is flexible enough to allow the user to select the model to be fit providing, for a given set of covariates, plots of the estimates for the predicted transition probabilities as a function of time.

摘要

在许多涉及事件史分析的临床研究中,感兴趣的事件是非致命性的,并且每个受试者可能会发生不止一次。基于计数过程理论的模型已被开发出来处理此类数据,复发被视为马尔可夫过程中的转变。在这种情况下,实验单位可以随时间在不同状态之间转换,并且可以使用纳入协变量影响的回归模型来估计相应的转移概率。尽管如此,大多数软件只关注回归参数的估计,而不提供转移概率估计。本文的目的是介绍一个用SAS开发的宏,用于估计转移概率,其中考虑了三种回归建模方法。该宏足够灵活,允许用户选择要拟合的模型,并针对给定的一组协变量,绘制预测转移概率估计值随时间变化的图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验