Iliakis G, Wang H, Perrault A R, Boecker W, Rosidi B, Windhofer F, Wu W, Guan J, Terzoudi G, Pantelias G
Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany.
Cytogenet Genome Res. 2004;104(1-4):14-20. doi: 10.1159/000077461.
It is widely accepted that unrepaired or misrepaired DNA double strand breaks (DSBs) lead to the formation of chromosome aberrations. DSBs induced in the DNA of higher eukaryotes by endogenous processes or exogenous agents can in principle be repaired either by non-homologous endjoining (NHEJ), or homology directed repair (HDR). The basis on which the selection of the DSB repair pathway is made remains unknown but may depend on the inducing agent, or process. Evaluation of the relative contribution of NHEJ and HDR specifically to the repair of ionizing radiation (IR) induced DSBs is important for our understanding of the mechanisms leading to chromosome aberration formation. Here, we review recent work from our laboratories contributing to this line of inquiry. Analysis of DSB rejoining in irradiated cells using pulsed-field gel electrophoresis reveals a fast component operating with half times of 10-30 min. This component of DSB rejoining is severely compromised in cells with mutations in DNA-PKcs, Ku, DNA ligase IV, or XRCC4, as well as after chemical inhibition of DNA-PK, indicating that it reflects classical NHEJ; we termed this form of DSB rejoining D-NHEJ to signify its dependence on DNA-PK. Although chemical inhibition, or mutation, in any of these factors delays processing, cells ultimately remove the majority of DSBs using an alternative pathway operating with slower kinetics (half time 2-10 h). This alternative, slow pathway of DSB rejoining remains unaffected in mutants deficient in several genes of the RAD52 epistasis group, suggesting that it may not reflect HDR. We proposed that it reflects an alternative form of NHEJ that operates as a backup (B-NHEJ) to the DNA-PK-dependent (D-NHEJ) pathway. Biochemical studies confirm the presence in cell extracts of DNA end joining activities operating in the absence of DNA-PK and indicate the dominant role for D-NHEJ, when active. These observations in aggregate suggest that NHEJ, operating via two complementary pathways, B-NHEJ and D-NHEJ, is the main mechanism through which IR-induced DSBs are removed from the DNA of higher eukaryotes. HDR is considered to either act on a small fraction of IR induced DSBs, or to engage in the repair process at a step after the initial end joining. We propose that high speed D-NHEJ is an evolutionary development in higher eukaryotes orchestrated around the newly evolved DNA-PKcs and pre-existing factors. It achieves within a few minutes restoration of chromosome integrity through an optimized synapsis mechanism operating by a sequence of protein-protein interactions in the context of chromatin and the nuclear matrix. As a consequence D-NHEJ mostly joins the correct DNA ends and suppresses the formation of chromosome aberrations, albeit, without ensuring restoration of DNA sequence around the break. B-NHEJ is likely to be an evolutionarily older pathway with less optimized synapsis mechanisms that rejoins DNA ends with kinetics of several hours. The slow kinetics and suboptimal synapsis mechanisms of B-NHEJ allow more time for exchanges through the joining of incorrect ends and cause the formation of chromosome aberrations in wild type and D-NHEJ mutant cells.
人们普遍认为,未修复或修复错误的DNA双链断裂(DSB)会导致染色体畸变的形成。由内源性过程或外源性因素在高等真核生物的DNA中诱导产生的DSB原则上可以通过非同源末端连接(NHEJ)或同源定向修复(HDR)进行修复。选择DSB修复途径的依据尚不清楚,但可能取决于诱导剂或过程。评估NHEJ和HDR对电离辐射(IR)诱导的DSB修复的相对贡献,对于我们理解导致染色体畸变形成的机制很重要。在此,我们回顾了我们实验室最近在这一研究方向上的工作。使用脉冲场凝胶电泳分析受辐照细胞中的DSB重新连接情况,发现有一个快速成分,其半衰期为10 - 30分钟。在DNA-PKcs、Ku、DNA连接酶IV或XRCC4发生突变的细胞中,以及在化学抑制DNA-PK后,DSB重新连接的这一成分会受到严重影响,这表明它反映了经典的NHEJ;我们将这种DSB重新连接形式称为D-NHEJ,以表明其对DNA-PK的依赖性。尽管这些因素中的任何一个发生化学抑制或突变都会延迟处理过程,但细胞最终会使用另一种动力学较慢(半衰期为2 - 10小时)的途径去除大部分DSB。这种DSB重新连接的替代慢途径在RAD52上位组的几个基因缺陷的突变体中不受影响,这表明它可能不反映HDR。我们提出它反映了NHEJ的一种替代形式,作为依赖DNA-PK的(D-NHEJ)途径的备用途径(B-NHEJ)。生化研究证实细胞提取物中存在在没有DNA-PK的情况下起作用的DNA末端连接活性,并表明当D-NHEJ有活性时起主导作用。这些总体观察结果表明,通过B-NHEJ和D-NHEJ这两个互补途径起作用的NHEJ,是从高等真核生物的DNA中去除IR诱导的DSB的主要机制。HDR被认为要么作用于一小部分IR诱导的DSB,要么在初始末端连接后的一个步骤参与修复过程。我们提出高速D-NHEJ是高等真核生物围绕新进化的DNA-PKcs和先前存在的因素精心策划的一种进化发展。它通过在染色质和核基质背景下通过一系列蛋白质-蛋白质相互作用运行的优化突触机制,在几分钟内实现染色体完整性的恢复。因此,D-NHEJ大多连接正确的DNA末端并抑制染色体畸变的形成,尽管不能确保断裂周围DNA序列的恢复。B-NHEJ可能是一种进化上更古老的途径,其突触机制不太优化,以数小时的动力学重新连接DNA末端。B-NHEJ的慢动力学和次优突触机制允许更多时间通过连接不正确的末端进行交换,并在野生型和D-NHEJ突变细胞中导致染色体畸变的形成。