Suppr超能文献

用于大麦全基因组分析的多样性阵列技术(DArT)

Diversity Arrays Technology (DArT) for whole-genome profiling of barley.

作者信息

Wenzl Peter, Carling Jason, Kudrna David, Jaccoud Damian, Huttner Eric, Kleinhofs Andris, Kilian Andrzej

机构信息

Center for the Application of Molecular Biology to International Agriculture, G.P.O. Box 3200, Canberra, ACT 2601, Australia.

出版信息

Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9915-20. doi: 10.1073/pnas.0401076101. Epub 2004 Jun 10.

Abstract

Diversity Arrays Technology (DArT) can detect and type DNA variation at several hundred genomic loci in parallel without relying on sequence information. Here we show that it can be effectively applied to genetic mapping and diversity analyses of barley, a species with a 5,000-Mbp genome. We tested several complexity reduction methods and selected two that generated the most polymorphic genomic representations. Arrays containing individual fragments from these representations generated DArT fingerprints with a genotype call rate of 98.0% and a scoring reproducibility of at least 99.8%. The fingerprints grouped barley lines according to known genetic relationships. To validate the Mendelian behavior of DArT markers, we constructed a genetic map for a cross between cultivars Steptoe and Morex. Nearly all polymorphic array features could be incorporated into one of seven linkage groups (98.8%). The resulting map comprised approximately 385 unique DArT markers and spanned 1,137 centimorgans. A comparison with the restriction fragment length polymorphism-based framework map indicated that the quality of the DArT map was equivalent, if not superior, to that of the framework map. These results highlight the potential of DArT as a generic technique for genome profiling in the context of molecular breeding and genomics.

摘要

多样性阵列技术(DArT)能够在不依赖序列信息的情况下,同时检测数百个基因组位点的DNA变异并进行分型。在此我们表明,它可有效地应用于大麦的遗传图谱构建和多样性分析,大麦是一种基因组大小为5000兆碱基对的物种。我们测试了几种降低复杂性的方法,并选择了两种能产生最多多态性基因组表现形式的方法。包含这些表现形式中单个片段的阵列产生了DArT指纹图谱,其基因型检出率为98.0%,评分重现性至少为99.8%。这些指纹图谱根据已知的遗传关系对大麦品系进行了分组。为了验证DArT标记的孟德尔遗传行为,我们构建了栽培品种Steptoe和Morex杂交的遗传图谱。几乎所有多态性阵列特征都可归入七个连锁群之一(98.8%)。所得图谱包含约385个独特的DArT标记,跨度为1137厘摩。与基于限制性片段长度多态性的框架图谱比较表明,DArT图谱的质量即便不优于框架图谱,也与之相当。这些结果凸显了DArT作为分子育种和基因组学背景下基因组分析通用技术的潜力。

相似文献

1
Diversity Arrays Technology (DArT) for whole-genome profiling of barley.
Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9915-20. doi: 10.1073/pnas.0401076101. Epub 2004 Jun 10.
2
Development of wild barley (Hordeum chilense)-derived DArT markers and their use into genetic and physical mapping.
Theor Appl Genet. 2012 Mar;124(4):713-22. doi: 10.1007/s00122-011-1741-2. Epub 2011 Nov 3.
3
Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome.
Theor Appl Genet. 2006 Nov;113(8):1409-20. doi: 10.1007/s00122-006-0365-4. Epub 2006 Oct 11.
4
Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana.
Mol Genet Genomics. 2005 Aug;274(1):30-9. doi: 10.1007/s00438-005-1145-6. Epub 2005 Jul 16.
5
DArT markers: diversity analyses and mapping in Sorghum bicolor.
BMC Genomics. 2008 Jan 22;9:26. doi: 10.1186/1471-2164-9-26.
7
DArT markers for the rye genome - genetic diversity and mapping.
BMC Genomics. 2009 Dec 3;10:578. doi: 10.1186/1471-2164-10-578.
9
Population structure and linkage disequilibrium in barley assessed by DArT markers.
Theor Appl Genet. 2009 Jun;119(1):43-52. doi: 10.1007/s00122-009-1015-4. Epub 2009 Apr 3.
10
Development of a molecular linkage map of pearl millet integrating DArT and SSR markers.
Theor Appl Genet. 2011 Jul;123(2):239-50. doi: 10.1007/s00122-011-1580-1. Epub 2011 Apr 8.

引用本文的文献

1
Evidence of Fine-Scale Genetic Structure in Tiger Sharks () Highlights the Importance of Stratified Sampling Regimes.
Evol Appl. 2025 Jun 8;18(6):e70117. doi: 10.1111/eva.70117. eCollection 2025 Jun.
2
Exploring Genetic Diversity and Population Structure of Australian Passion Fruit Germplasm.
BioTech (Basel). 2025 May 16;14(2):37. doi: 10.3390/biotech14020037.
5
Prickly Problems: 's Low Genetic Diversity Despite Inbreeding Avoidance.
Ecol Evol. 2025 Apr 15;15(4):e71213. doi: 10.1002/ece3.71213. eCollection 2025 Apr.
10
GWAS for identification of genomic regions and candidate genes in vegetable crops.
Funct Integr Genomics. 2024 Oct 29;24(6):203. doi: 10.1007/s10142-024-01477-x.

本文引用的文献

1
A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome.
Theor Appl Genet. 1993 Jul;86(6):705-12. doi: 10.1007/BF00222660.
2
Optimizing parental selection for genetic linkage maps.
Genome. 1993 Feb;36(1):181-6. doi: 10.1139/g93-024.
3
Toward a marker-dense meiotic map of the potato genome: lessons from linkage group I.
Genetics. 2003 Dec;165(4):2107-16. doi: 10.1093/genetics/165.4.2107.
4
Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid.
Nature. 1953 Apr 25;171(4356):737-8. doi: 10.1038/171737a0.
6
Large-scale identification of single-feature polymorphisms in complex genomes.
Genome Res. 2003 Mar;13(3):513-23. doi: 10.1101/gr.541303.
7
A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers.
Theor Appl Genet. 2003 Feb;106(4):607-14. doi: 10.1007/s00122-002-1083-1. Epub 2002 Sep 13.
8
Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers.
Mol Genet Genomics. 2002 Dec;268(4):543-52. doi: 10.1007/s00438-002-0772-4. Epub 2002 Nov 8.
9
Distribution of 5-methylcytosine residues in 5S rRNA genes in Arabidopsis thaliana and Secale cereale.
Mol Genet Genomics. 2002 Dec;268(4):510-7. doi: 10.1007/s00438-002-0761-7. Epub 2002 Oct 25.
10
Recombination and gene conversion in a 170-kb genomic region of Arabidopsis thaliana.
Genetics. 2002 Jul;161(3):1269-78. doi: 10.1093/genetics/161.3.1269.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验