Suppr超能文献

事件相关电位的统计参数映射:I. 一般考虑因素。

Statistical parametric mapping for event-related potentials: I. Generic considerations.

作者信息

Kiebel Stefan J, Friston Karl J

机构信息

Functional Imaging Laboratory, Wellcome Department of Imaging Neuroscience, Institute of Neurology, WC1N 3BG, London, UK.

出版信息

Neuroimage. 2004 Jun;22(2):492-502. doi: 10.1016/j.neuroimage.2004.02.012.

Abstract

In this paper, we frame the strategy and motivations behind developments in statistical parametric mapping (SPM) for the analysis of electroencephalogram (EEG) data. This work deals specifically with SPM procedures for the analysis of event-related potentials (ERP). We place these developments in the larger context of integrating electrophysiological and hemodynamic measurements of evoked brain responses through the fusion of EEG and fMRI data. In this paper, we consider some fundamental issues when selecting an appropriate statistical model that enables diverse questions to be asked of the data and at the same time retains maximum sensitivity. The three key issues addressed in this paper are as follows: (i) should multivariate or mass univariate analyses be adopted, (ii) should time be treated as an experimental factor or as a dimension of the measured response variable, and (iii) how to form appropriate explanatory variables in a hierarchical observation model. We review the relative merits of the different options and explain the rationale for our choices. In brief, we motivate a mass univariate approach in terms of sensitivity to region-specific responses. This involves modeling responses at each voxel or space bin separately. In contradistinction, we treat time as an experimental factor to enable inferences about temporally distributed responses that encompass multiple time bins. In a companion paper, we develop statistical models of ERPs in the time domain that follow from the heuristics established here and illustrate the approach using simulated and real data.

摘要

在本文中,我们阐述了用于脑电图(EEG)数据分析的统计参数映射(SPM)发展背后的策略和动机。这项工作专门涉及用于分析事件相关电位(ERP)的SPM程序。我们将这些发展置于通过融合EEG和功能磁共振成像(fMRI)数据来整合诱发脑反应的电生理和血液动力学测量的更广泛背景中。在本文中,我们考虑了选择合适的统计模型时的一些基本问题,该模型能够对数据提出各种问题,同时保持最大的敏感性。本文讨论的三个关键问题如下:(i)应采用多变量分析还是大量单变量分析,(ii)时间应被视为实验因素还是测量响应变量的一个维度,以及(iii)如何在分层观察模型中形成合适的解释变量。我们回顾了不同选项的相对优点,并解释了我们选择的理由。简而言之,我们基于对区域特异性反应的敏感性,倡导采用大量单变量方法。这涉及分别对每个体素或空间单元的反应进行建模。相反,我们将时间视为一个实验因素,以便能够推断包含多个时间单元的时间分布反应。在一篇配套论文中,我们根据此处确立的启发式方法,开发了时域中ERP 的统计模型,并使用模拟数据和真实数据说明了该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验