Swinnen I A M, Bernaerts K, Dens E J J, Geeraerd A H, Van Impe J F
BioTeC--Bioprocess Technology and Control, Katholieke Universiteit Leuven, W. de Croylaan 46, B-3001 Heverlee, Belgium.
Int J Food Microbiol. 2004 Jul 15;94(2):137-59. doi: 10.1016/j.ijfoodmicro.2004.01.006.
This paper summarises recent trends in predictive modelling of microbial lag phenomena. The lag phase is approached from both a qualitative and a quantitative point of view. First, a definition of lag and an analysis of the prevailing measuring techniques for the determination of lag time is presented. Furthermore, based on experimental results presented in literature, factors influencing the lag phase are discussed. Major modelling approaches concerning lag phase estimation are critically assessed. In predictive microbiology, a two-step modelling approach is used. Primary models describe the evolution of microbial numbers with time and can be subdivided into deterministic and stochastic models. Primary deterministic models, e.g., Baranyi and Roberts [Int. J. Food Microbiol. 23 (1994) 277], Hills and Wright [J. Theor. Biol. 168 (1994) 31] and McKellar [Int. J. Food Microbiol. 36 (1997) 179], describe the evolution of microorganisms, using one single (deterministic) set of model parameters. In stochastic models, e.g., Buchanan et al. [Food Microbiol. 14 (1997) 313], Baranyi [J. Theor. Biol. 192 (1998) 403] and McKellar [J. Appl. Microbiol. 90 (2001) 407], the model parameters are distributed or random variables. Secondary models describe the relation between primary model parameters and influencing factors (e.g., environmental conditions). This survey mainly focuses on the influence of temperature and culture history on the lag phase during growth of bacteria.
本文总结了微生物延迟现象预测建模的最新趋势。从定性和定量两个角度探讨了延迟期。首先,给出了延迟的定义,并分析了用于确定延迟时间的主要测量技术。此外,基于文献中给出的实验结果,讨论了影响延迟期的因素。对有关延迟期估计的主要建模方法进行了批判性评估。在预测微生物学中,采用两步建模方法。一级模型描述微生物数量随时间的变化,可细分为确定性模型和随机模型。一级确定性模型,例如巴拉尼和罗伯茨[《国际食品微生物学杂志》23 (1994) 277]、希尔斯和赖特[《理论生物学杂志》168 (1994) 31]以及麦凯勒[《国际食品微生物学杂志》36 (1997) 179],使用单一(确定性)的一组模型参数来描述微生物的变化。在随机模型中,例如布坎南等人[《食品微生物学》14 (1997) 313]、巴拉尼[《理论生物学杂志》192 (1998) 403]以及麦凯勒[《应用微生物学杂志》90 (2001) 407],模型参数是分布或随机变量。二级模型描述一级模型参数与影响因素(例如环境条件)之间的关系。本综述主要关注温度和培养历史对细菌生长过程中延迟期的影响。