Xu Lin, Krenitsky Daria M, Seacat Andrew M, Butenhoff John L, Anders M W
Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14624, USA.
Chem Res Toxicol. 2004 Jun;17(6):767-75. doi: 10.1021/tx034222x.
Perfluorooctanesulfonic acid (PFOS) and its derivatives have been used in a range of industrial and commercial applications, including the manufacture of surfactants, adhesives, anticorrosion agents, and insecticides. PFOS is found at detectable concentrations in human and wildlife tissues and in the global environment. N-Substituted perfluorooctanesulfonamides are believed to be degraded to PFOS and, therefore, contribute to the accumulation of PFOS in the environment. N-Ethyl-N-(2-hydroxyethyl)perfluorooctanesulfonamide (N-EtFOSE) is converted to PFOS in experimental animals. The objective of this study was to elucidate the pathways for the biotransformation of N-EtFOSE, which is a major precursor and component of PFOS-based compounds. N-EtFOSE and several putative metabolites were incubated with liver microsomes and cytosol and with liver slices from male Sprague-Dawley rats. Microsomal fractions fortified with NADPH catalyzed the N-deethylation of N-EtFOSE to give N-(2-hydroxyethyl)perfluorooctanesulfonamide (FOSE alcohol) and of FOSE alcohol to give perfluorooctanesulfonamide (FOSA). These N-dealkylation reactions were catalyzed mainly by male rat P450 2C11 and P450 3A2 and by human P450 2C19 and 3A4/5. Rat liver microsomal fractions incubated with UDP-glucuronic acid catalyzed the O-glucuronidation of N-EtFOSE and FOSE alcohol and the N-glucuronidation of FOSA. Cytosolic fractions incubated with NAD(+) catalyzed the oxidation of FOSE alcohol to perfluooctanesulfonamidoacetate (FOSAA). The oxidation of N-EtFOSE to N-ethylperfluorooctanesulfonamidoacetate (N-EtFOSAA) was observed in liver slices but not in cytosolic fractions. FOSA was biotransformed in liver slices to PFOS, albeit at a low rate. These results show that the major pathway for the biotransformation of N-EtFOSE is N-dealkylation to give FOSA. The biotransformation of FOSA to PFOS explains the observation that PFOS is found in animals given N-EtFOSE.
全氟辛烷磺酸(PFOS)及其衍生物已被用于一系列工业和商业应用中,包括表面活性剂、粘合剂、防腐剂和杀虫剂的制造。在人类和野生动物组织以及全球环境中都能检测到PFOS的浓度。N-取代全氟辛烷磺酰胺被认为会降解为PFOS,因此会导致PFOS在环境中的积累。N-乙基-N-(2-羟乙基)全氟辛烷磺酰胺(N-EtFOSE)在实验动物体内会转化为PFOS。本研究的目的是阐明N-EtFOSE的生物转化途径,N-EtFOSE是基于PFOS的化合物的主要前体和成分。将N-EtFOSE和几种假定的代谢物与雄性Sprague-Dawley大鼠的肝微粒体、细胞溶质以及肝切片一起孵育。用NADPH强化的微粒体部分催化N-EtFOSE的N-脱乙基反应,生成N-(2-羟乙基)全氟辛烷磺酰胺(FOSE醇),并催化FOSE醇的N-脱乙基反应生成全氟辛烷磺酰胺(FOSA)。这些N-脱烷基反应主要由雄性大鼠的P450 2C11和P450 3A2以及人类的P450 2C19和3A4/5催化。与UDP-葡萄糖醛酸一起孵育的大鼠肝微粒体部分催化N-EtFOSE和FOSE醇的O-葡萄糖醛酸化以及FOSA的N-葡萄糖醛酸化。与NAD(+)一起孵育的细胞溶质部分催化FOSE醇氧化为全氟辛烷磺酰胺乙酸酯(FOSAA)。在肝切片中观察到N-EtFOSE氧化为N-乙基全氟辛烷磺酰胺乙酸酯(N-EtFOSAA),但在细胞溶质部分未观察到。FOSA在肝切片中生物转化为PFOS,尽管转化率较低。这些结果表明,N-EtFOSE生物转化的主要途径是N-脱烷基生成FOSA。FOSA向PFOS的生物转化解释了在给予N-EtFOSE的动物中发现PFOS的现象。