Huffman Fred N., Hagen Kenneth G., Whalen Robert L., Fuqua John M., Norman John C.
Thermo Electron Research and Development Center, Waltham, Mass.
Cardiovasc Dis. 1974;1(4):343-368.
The feasibility of radioisotope-fueled circulatory support systems depends on the ability of the body to dissipate the reject heat from the power source driving the blood pump as well as to tolerate chronic intracorporeal radiation. Our studies have focused on the use of the circulating blood as a heat sink. Initial in vivo heat transfer studies utilized straight tube heat exchangers (electrically and radioisotope energized) to replace a segment of the descending aorta. More recent studies have used a left ventricular assist pump as a blood-cooled heat exchanger. This approach minimizes trauma, does not increase the area of prosthetic interface with the blood, and minimizes system volume. Heat rejected from the thermal engine (vapor or gas cycle) is transported from the nuclear power source in the abdomen to the pump in the thoracic cavity via hydraulic lines. Adjacent tissue is protected from the fuel capsule temperature (900 to 1200 degrees F) by vacuum foil insulation and polyurethane foam. The in vivo thermal management problems have been studied using a simulated thermal system (STS) which approximates the heat rejection and thermal transport mechanisms of the nuclear circulatory support systems under development by NHLI. Electric heaters simulate the reject heat from the thermal engines. These studies have been essential in establishing the location, suspension, surgical procedures, and postoperative care for implanting prototype nuclear heart assist systems in calves. The pump has a thermal impedance of 0.12 degrees C/watt. Analysis of the STS data in terms of an electrical analog model implies a heat transfer coefficient of 4.7 x 10(-3) watt/cm(2) degrees C in the abdomen compared to a value of 14.9 x 10(-3) watt/cm(2) degrees C from the heat exchanger plenum into the diaphragm.
放射性同位素驱动的循环支持系统的可行性取决于人体消散驱动血泵的动力源产生的废热以及耐受慢性体内辐射的能力。我们的研究聚焦于利用循环血液作为散热源。最初的体内传热研究使用直管式热交换器(由电力和放射性同位素供能)来替代降主动脉的一段。最近的研究则使用左心室辅助泵作为血液冷却的热交换器。这种方法将创伤降至最低,不会增加假体与血液的接触面积,并且使系统体积最小化。从热机(蒸汽或气体循环)排出的热量通过液压管路从腹部的核动力源传输至胸腔内的泵。通过真空箔绝缘和聚氨酯泡沫保护相邻组织免受燃料包温度(900至1200华氏度)的影响。使用模拟热系统(STS)研究了体内热管理问题,该系统近似于国立心肺血液研究所正在研发的核循环支持系统的散热和热传输机制。电加热器模拟热机排出的热量。这些研究对于确定在小牛体内植入原型核心脏辅助系统的位置、悬吊方式、手术程序及术后护理至关重要。该泵的热阻为0.12摄氏度/瓦。根据电学模拟模型对STS数据进行分析表明,腹部的传热系数为4.7×10⁻³瓦/平方厘米·摄氏度,而从热交换器气室到横膈膜的传热系数值为14.9×10⁻³瓦/平方厘米·摄氏度。