Mari Carlo Fulvi
Department of Mathematical Sciences, Loughborough University, United Kingdom; Department of Psychology, University of Liège, Belgium.
J Comput Neurosci. 2004 Jul-Aug;17(1):57-79. doi: 10.1023/B:JCNS.0000023871.60959.88.
A model of columnar networks of neocortical association areas is studied. The neuronal network is composed of many Hebbian autoassociators, or modules, each of which interacts with a relatively small number of the others, randomly chosen. Any module encodes and stores a number of elementary percepts, or features. Memory items, or patterns, are peculiar combinations of features sparsely distributed over the multi-modular network. Any feature stored in any module can be involved in several of the stored patterns; feature-sharing is in fact source of local ambiguities and, consequently, a potential cause of erroneous memory retrieval spreading through the model network in pattern completion tasks. The memory retrieval dynamics of the large modular autoassociator is investigated by combining mathematical analysis and numerical simulations. An oscillatory retrieval process is proposed that is very efficient in overcoming feature-sharing drawbacks; it requires a mechanism that modulates the robustness of local attractors to noise, and neuronal activity sparseness such that quiescent and active modules are about equally noisy to any post-synaptic module.Moreover, it is shown that statistical correlation between 'kinds' of features across the set of memory patterns can be exploited to obtain a more efficient achievement of memory retrieval capabilities. It is also shown that some spots of the network cannot be reached by retrieval activity spread if they are not directly cued by the stimulus. The locations of these activity isles depend on the pattern to retrieve, while their extension only depends (in large networks) on statistics of inter-modular connections and stored patterns. The existence of activity isles determines an upper-bound to retrieval quality that does not depend on the specific retrieval dynamics adopted, nor on whether feature-sharing is permitted. The oscillatory retrieval process nearly saturates this bound.
对新皮层联合区柱状网络模型进行了研究。神经元网络由许多赫布型自联想器或模块组成,每个模块与其他相对较少数量的模块随机相互作用。任何一个模块编码并存储一些基本感知或特征。记忆项或模式是稀疏分布在多模块网络上的特征的特殊组合。存储在任何模块中的任何特征都可能参与多个存储模式;特征共享实际上是局部模糊性的来源,因此也是模式完成任务中错误记忆检索在模型网络中传播的潜在原因。通过结合数学分析和数值模拟研究了大型模块化自联想器的记忆检索动力学。提出了一种振荡检索过程,该过程在克服特征共享缺点方面非常有效;它需要一种机制来调节局部吸引子对噪声的鲁棒性,以及神经元活动的稀疏性,使得静止和活跃模块对任何突触后模块的噪声大致相同。此外,研究表明,可以利用记忆模式集合中不同“类型”特征之间的统计相关性来更有效地实现记忆检索能力。研究还表明,如果网络中的某些点没有受到刺激的直接提示,检索活动就无法传播到这些点。这些活动孤岛的位置取决于要检索的模式,而它们的范围仅取决于(在大型网络中)模块间连接和存储模式的统计信息。活动孤岛的存在决定了检索质量的上限,该上限不取决于所采用的特定检索动力学,也不取决于是否允许特征共享。振荡检索过程几乎达到了这个上限。