Suppr超能文献

基于小波的功能磁共振成像时间序列多重分形分析

Wavelet-based multifractal analysis of fMRI time series.

作者信息

Shimizu Yu, Barth Markus, Windischberger Christian, Moser Ewald, Thurner Stefan

机构信息

MR Centre of Excellence, Medical University of Vienna, Austria.

出版信息

Neuroimage. 2004 Jul;22(3):1195-202. doi: 10.1016/j.neuroimage.2004.03.007.

Abstract

Functional magnetic resonance imaging (fMRI) time series are investigated with a multifractal method based on the Wavelet Modulus Maxima (WTMM) method to extract local singularity ("fractal") exponents. The spectrum of singularity exponents of each fMRI time series is quantified by spectral characteristics including its maximum and the corresponding dimension. We found that the range of Hölder exponents in voxels with activation is close to 1, whereas exponents are close to 0.5 in white matter voxels without activation. The maximum dimension decreases going from white matter to gray matter, and is lower still for activated time series. The full-width-at-half-maximum of the spectra is higher in activated areas. The proposed method becomes particularly effective when combining these spectral characteristics into a single parameter. Using these multifractal parameters, it is possible to identify activated areas in the human brain in both hybrid and in vivo fMRI data sets without knowledge of the stimulation paradigm applied.

摘要

利用基于小波模极大值(WTMM)方法的多重分形方法研究功能磁共振成像(fMRI)时间序列,以提取局部奇异性(“分形”)指数。通过包括其最大值和相应维度在内的光谱特征对每个fMRI时间序列的奇异性指数谱进行量化。我们发现,有激活的体素中的赫尔德指数范围接近1,而在无激活的白质体素中指数接近0.5。从白质到灰质,最大维度减小,对于激活的时间序列则更低。激活区域中光谱的半高全宽更高。当将这些光谱特征组合成一个单一参数时,所提出的方法变得特别有效。使用这些多重分形参数,无需了解所应用的刺激范式,就可以在混合和活体fMRI数据集中识别出人类大脑中的激活区域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验