Volbeda Anne, Fontecilla-Camps Juan C
Laboratoire de Cristallographie et de Cristallogenèse des Protéines, Institut de Biologie Structurale J.P. Ebel, 41 rue Jules Horowitz, 38027 Cédex 1, Grenoble, France.
J Biol Inorg Chem. 2004 Jul;9(5):525-32. doi: 10.1007/s00775-004-0565-9. Epub 2004 Jun 24.
Acetyl coenzyme A synthase (ACS) acts in concert with carbon monoxide dehydrogenase (CODH) to catalyze the formation of acetyl-coenzyme A from CO(2)-derived CO and CH(3)(+) molecules. Recent crystal structures have shown that the three globular domains constituting the ACS subunit may be arranged in either a closed or an open conformation. A long hydrophobic tunnel network allows diffusion of CO between the CODH and the ACS active sites in the closed form, but it is blocked in the open form. On the other hand, the active site of ACS is only accessible for coenzyme A and the methyl donating protein in the open domain conformation. Although several metal compositions have been observed for this active site, present consensus is that it consists of a Ni-Ni-[Fe(4)S(4)] cluster. The observed conformational changes of ACS and the resulting different substrate accessibilities of the catalytic central nickel are reviewed here in the context of a putative CO(2)/CO tunnel gating mechanism.
乙酰辅酶A合酶(ACS)与一氧化碳脱氢酶(CODH)协同作用,催化由二氧化碳衍生的一氧化碳和甲基阳离子分子形成乙酰辅酶A。最近的晶体结构表明,构成ACS亚基的三个球状结构域可能以封闭或开放构象排列。一个长的疏水隧道网络允许一氧化碳在封闭形式下在CODH和ACS活性位点之间扩散,但在开放形式下它被阻断。另一方面,ACS的活性位点仅在开放结构域构象中对辅酶A和甲基供体蛋白可及。尽管已观察到该活性位点的几种金属组成,但目前的共识是它由一个镍-镍-[铁硫簇]组成。本文在假定的二氧化碳/一氧化碳隧道门控机制的背景下,综述了观察到的ACS构象变化以及催化中心镍由此产生的不同底物可及性。