Cerosaletti Karen, Concannon Patrick
Molecular Genetics Program, Benaroya Research Institute at Virginia Mason, USA.
J Biol Chem. 2004 Sep 10;279(37):38813-9. doi: 10.1074/jbc.M404294200. Epub 2004 Jul 1.
The Atm protein kinase and Mre11-Rad50-nibrin (MRN) complex play an integral role in the cellular response to DNA double-strand breaks. Mutations in Mre11 and nibrin result in the radiosensitivity disorders ataxia-telangiectasia-like disorder (ATLD) and Nijmegen breakage syndrome (NBS), respectively. Cells from ATLD and NBS patients are deficient in activation of the Atm protein kinase and phosphorylation of downstream Atm targets following irradiation. However, the roles of individual MRN complex proteins in Atm function are not clear, because the mutations in NBS and ATLD cells result in global effects on the MRN complex. Previously we showed that the C-terminal 100 amino acids of nibrin were necessary and sufficient to translocate the MRN complex to the nucleus. Here we have taken advantage of this feature of nibrin to create isogenic cell lines lacking either nibrin or Mre11-Rad50 in the nucleus. We found that nuclear expression of Mre11-Rad50, but not nibrin, stimulated Atm activation at early times after low doses of radiation. At later times or higher doses of irradiation, Atm activation was independent of Mre11-Rad50 or nibrin. The requirement of MRN complex proteins for downstream Atm phosphorylation events following irradiation was more complex. Phosphorylation of nibrin and Chk2 by Atm required Mre11-Rad50 expression in the nucleus at early times after irradiation, reflecting the stimulation of Atm activation by Mre11-Rad50. By contrast, autophosphorylation of Chk2 and phosphorylation of Smc1 at Ser-957 was dependent on the MRN complex 60 min after irradiation, even though Atm was activated at that time point. These results indicate an independent role for Mre11-Rad50 in the activation of Atm and suggest nibrin and/or Mre11-Rad50 also act as adaptors for some downstream Atm phosphorylation events.
Atm蛋白激酶和Mre11-Rad50-尼布林(MRN)复合物在细胞对DNA双链断裂的反应中发挥着不可或缺的作用。Mre11和尼布林的突变分别导致了放射敏感性疾病——共济失调毛细血管扩张样疾病(ATLD)和尼曼-匹克氏症候群(NBS)。来自ATLD和NBS患者的细胞在辐射后Atm蛋白激酶的激活以及下游Atm靶点的磷酸化方面存在缺陷。然而,由于NBS和ATLD细胞中的突变会对MRN复合物产生全局性影响,所以单个MRN复合物蛋白在Atm功能中的作用尚不清楚。此前我们表明,尼布林的C末端100个氨基酸对于将MRN复合物转运至细胞核是必要且充分的。在此,我们利用尼布林的这一特性创建了细胞核中缺乏尼布林或Mre11-Rad50的同基因细胞系。我们发现,低剂量辐射后早期,Mre11-Rad50而非尼布林的核表达刺激了Atm的激活。在更晚的时间点或更高剂量的辐射下,Atm的激活不依赖于Mre11-Rad50或尼布林。辐射后MRN复合物蛋白对下游Atm磷酸化事件的需求更为复杂。辐射后早期,Atm对尼布林和Chk2的磷酸化需要细胞核中Mre11-Rad50的表达,这反映了Mre11-Rad50对Atm激活的刺激作用。相比之下,辐射60分钟后,Chk2的自磷酸化和Smc1在Ser-957位点的磷酸化依赖于MRN复合物,尽管此时Atm已被激活。这些结果表明Mre11-Rad50在Atm激活中具有独立作用,并提示尼布林和/或Mre11-Rad50也作为一些下游Atm磷酸化事件的衔接子发挥作用。