Roh Tae-young, Ngau Wing Chi, Cui Kairong, Landsman David, Zhao Keji
Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, USA.
Nat Biotechnol. 2004 Aug;22(8):1013-6. doi: 10.1038/nbt990. Epub 2004 Jul 4.
The expression patterns of eukaryotic genomes are controlled by their chromatin structure, consisting of nucleosome subunits in which DNA of approximately 146 bp is wrapped around a core of 8 histone molecules. Post-translational histone modifications play an essential role in modifying chromatin structure. Here we apply a combination of SAGE and chromatin immunoprecipitation (ChIP) protocols to determine the distribution of hyperacetylated histones H3 and H4 in the Saccharomyces cerevisiae genome. We call this approach genome-wide mapping technique (GMAT). Using GMAT, we find that the highest acetylation levels are detected in the 5' end of a gene's coding region, but not in the promoter. Furthermore, we show that the histone acetyltransferase, GCN5p, regulates H3 acetylation in the promoter and 5' end of the coding regions. These findings indicate that GMAT should find valuable applications in mapping target sites of chromatin-modifying enzymes.
真核生物基因组的表达模式由其染色质结构控制,染色质结构由核小体亚基组成,其中约146 bp的DNA缠绕在8个组蛋白分子的核心周围。组蛋白的翻译后修饰在改变染色质结构中起重要作用。在此,我们应用SAGE和染色质免疫沉淀(ChIP)方案的组合来确定酿酒酵母基因组中高乙酰化组蛋白H3和H4的分布。我们将这种方法称为全基因组映射技术(GMAT)。使用GMAT,我们发现基因编码区的5'端检测到最高的乙酰化水平,而启动子区域则未检测到。此外,我们表明组蛋白乙酰转移酶GCN5p调节编码区启动子和5'端的H3乙酰化。这些发现表明GMAT在绘制染色质修饰酶的靶位点方面应具有重要的应用价值。