Szabó B, Környei Zs, Zách J, Selmeczi D, Csúcs G, Czirók A, Vicsek T
Research Group for Biological Physics, HAS, Budapest, Hungary.
Cell Motil Cytoskeleton. 2004 Sep;59(1):38-49. doi: 10.1002/cm.20022.
A novel assay based on micropatterning and time-lapse microscopy has been developed for the study of nuclear migration dynamics in cultured mammalian cells. When cultured on 10-20-microm wide adhesive stripes, the motility of C6 glioma and primary mouse fibroblast cells is diminished. Nevertheless, nuclei perform an unexpected auto-reverse motion: when a migrating nucleus approaches the leading edge, it decelerates, changes the direction of motion, and accelerates to move toward the other end of the elongated cell. During this process, cells show signs of polarization closely following the direction of nuclear movement. The observed nuclear movement requires a functioning microtubular system, as revealed by experiments disrupting the main cytoskeletal components with specific drugs. On the basis of our results, we argue that auto-reverse nuclear migration is due to forces determined by the interplay of microtubule dynamics and the changing position of the microtubule organizing center as the nucleus reaches the leading edge. Our assay recapitulates specific features of nuclear migration (cell polarization, oscillatory nuclear movement), while it allows the systematic study of a large number of individual cells. In particular, our experiments yielded the first direct evidence of reversive nuclear motion in mammalian cells, induced by attachment constraints.
一种基于微图案化和延时显微镜技术的新型检测方法已被开发出来,用于研究培养的哺乳动物细胞中的核迁移动力学。当在10 - 20微米宽的黏附条带上培养时,C6胶质瘤细胞和原代小鼠成纤维细胞的运动性会降低。然而,细胞核会进行意想不到的自动反向运动:当一个迁移的细胞核接近细胞前缘时,它会减速,改变运动方向,并加速朝着细长细胞的另一端移动。在此过程中,细胞会紧密跟随核运动方向呈现出极化迹象。如用特定药物破坏主要细胞骨架成分的实验所示,观察到的核运动需要一个功能正常的微管系统。基于我们的结果,我们认为自动反向核迁移是由于微管动力学与微管组织中心位置变化之间相互作用所决定的力导致的,当细胞核到达前缘时,微管组织中心位置会发生变化。我们的检测方法概括了核迁移的特定特征(细胞极化、振荡性核运动),同时它允许对大量单个细胞进行系统研究。特别是,我们的实验首次直接证明了在哺乳动物细胞中由附着限制诱导的反向核运动。