Dumitru Razvan V, Ragsdale Stephen W
Department of Biochemistry, Beadle Center, University of Nebraska, Lincoln, Nebraska 68588-0664, USA.
J Biol Chem. 2004 Sep 17;279(38):39389-95. doi: 10.1074/jbc.M406442200. Epub 2004 Jul 15.
The first committed step in methanopterin biosynthesis is catalyzed by 4-(beta-D-ribofuranosyl)aminobenzene 5'-phosphate (RFA-P) synthase. Unlike all known phosphoribosyltransferases, beta-RFA-P synthase catalyzes the unique formation of a C-riboside instead of an N-riboside in the condensation of p-aminobenzoic acid (pABA) and 5-phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) to produce 4-(beta-D-ribofuranosyl)aminobenzene 5'-phosphate (beta-RFA-P), CO(2), and inorganic pyrophosphate (PP(i)). Here we report the successful cloning, active overexpression in Escherichia coli, and purification of this homodimeric enzyme containing two 36.2-kDa subunits from the methanogen Methanococcus jannaschii. Steady-state initial velocity and product inhibition kinetic studies indicate an ordered Bi-Ter mechanism involving binding of PRPP, then pABA, followed by release of the products CO(2), then beta-RFA-P, and finally PP. The Michaelis parameters are as follows: K(m)pABA, 0.15 mm; K(m)PRPP, 1.50 mm; V(max), 375 nmol/min/mg; k(cat), 0.23 s(-1). CO(2) showed uncompetitive inhibition, K(i) = 0.990 mm, under varied PRPP and saturated pABA, and a mixed type of inhibition, K(1) = 1.40 mm and K = 3.800 mm, under varied pABA and saturated PRPP. RFA-P showed uncompetitive inhibition, K(i) = 0.210 mm, under varied PRPP and saturated pABA, and again uncompetitive, K(i) = 0.300 mm, under saturated PRPP and varied pABA. PP(i) exhibits competitive inhibition, K(i) = 0.320 mm, under varied PRPP and saturated pABA, and a mixed type of inhibition, K(1) = 0.60 mm and K(2) = 1.900 mm, under saturated PRPP and varied pABA. Synthase lacks any chromogenic cofactor, and the presence of pyridoxal phosphate and the mechanistically related pyruvoyl cofactors has been strictly excluded.
甲蝶呤生物合成的首个关键步骤由4-(β-D-呋喃核糖基)氨基苯5'-磷酸(RFA-P)合酶催化。与所有已知的磷酸核糖基转移酶不同,β-RFA-P合酶在对氨基苯甲酸(pABA)和5-磷酸-α-D-核糖基-1-焦磷酸(PRPP)缩合形成4-(β-D-呋喃核糖基)氨基苯5'-磷酸(β-RFA-P)、CO₂和无机焦磷酸(PP(i))的过程中,催化形成C-核糖苷而非N-核糖苷。在此,我们报告了成功克隆来自嗜压甲烷球菌的这种含有两个36.2 kDa亚基的同二聚体酶,并在大肠杆菌中实现活性过量表达及纯化。稳态初始速度和产物抑制动力学研究表明其为有序的双底物-双产物机制,即先结合PRPP,然后是pABA,接着释放产物CO₂,再释放β-RFA-P,最后释放PP。米氏参数如下:K(m)pABA为0.15 mM;K(m)PRPP为1.50 mM;V(max)为375 nmol/min/mg;k(cat)为0.23 s⁻¹。在PRPP浓度变化且pABA饱和时,CO₂表现出非竞争性抑制,K(i)=0.990 mM;在pABA浓度变化且PRPP饱和时,CO₂表现出混合型抑制,K₁=1.40 mM,K₂=3.800 mM。在PRPP浓度变化且pABA饱和时,RFA-P表现出非竞争性抑制,K(i)=0.210 mM;在PRPP饱和且pABA浓度变化时,RFA-P再次表现出非竞争性抑制,K(i)=0.300 mM。在PRPP浓度变化且pABA饱和时,PP(i)表现出竞争性抑制,K(i)=0.320 mM;在PRPP饱和且pABA浓度变化时,PP(i)表现出混合型抑制,K₁=0.60 mM,K₂=1.900 mM。该合酶缺乏任何生色辅因子,并且已严格排除磷酸吡哆醛和机制相关的丙酮酰辅因子的存在。