Dupuis Luc, Oudart Hugues, René Frédérique, Gonzalez de Aguilar Jose-Luis, Loeffler Jean-Philippe
Laboratoire de Signalisations Moléculaires et Neurodégénérescence, Faculté de Médecine, EA3433, Université Louis Pasteur, 11 Rue Humann, 67085 Strasbourg Cedex, France.
Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11159-64. doi: 10.1073/pnas.0402026101. Epub 2004 Jul 19.
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by selective loss of motor neurons and progressive muscle wasting. Growing evidence indicates that mitochondrial dysfunction, not only occurring in motor neurons but also in skeletal muscle, may play a crucial role in the pathogenesis. In this regard, the life expectancy of the ALS G93A mouse line is extended by creatine, an intracellular energy shuttle that ameliorates muscle function. Moreover, a population of patients with sporadic ALS exhibits a generalized hypermetabolic state of as yet unknown origin. Altogether, these findings led us to explore whether alterations in energy homeostasis may contribute to the disease process. Here, we show important variations in a number of metabolic indicators in transgenic ALS mice, which in all shows a metabolic deficit. These alterations were accompanied early in the asymptomatic phase of the disease by reduced adipose tissue accumulation, increased energy expenditure, and concomitant skeletal muscle hypermetabolism. Compensating this energetic imbalance with a highly energetic diet extended mean survival by 20%. In conclusion, we suggest that hypermetabolism, mainly of muscular origin, may represent by itself an additional driven force involved in increasing motor neuron vulnerability.
肌萎缩侧索硬化症(ALS)是一种成人起病的神经退行性疾病,其特征是运动神经元选择性丧失和进行性肌肉萎缩。越来越多的证据表明,线粒体功能障碍不仅发生在运动神经元中,也发生在骨骼肌中,可能在发病机制中起关键作用。在这方面,肌酸可延长ALS G93A小鼠品系的寿命,肌酸是一种细胞内能量穿梭物质,可改善肌肉功能。此外,散发性ALS患者群体表现出一种来源不明的全身性高代谢状态。总之,这些发现促使我们探究能量稳态的改变是否可能促成疾病进程。在此,我们展示了转基因ALS小鼠中一些代谢指标的重要变化,所有这些变化均显示出代谢缺陷。在疾病的无症状期早期,这些改变伴随着脂肪组织积累减少、能量消耗增加以及骨骼肌同时出现的高代谢。用高能量饮食补偿这种能量失衡可使平均生存期延长20%。总之,我们认为,主要源于肌肉的高代谢本身可能是增加运动神经元易损性的另一个驱动力。