Suppr超能文献

加速分子动力学:一种用于生物分子的有前景且高效的模拟方法。

Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules.

作者信息

Hamelberg Donald, Mongan John, McCammon J Andrew

机构信息

NSF Center for Theoretical Biological Physics and Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92093-0365, USA.

出版信息

J Chem Phys. 2004 Jun 22;120(24):11919-29. doi: 10.1063/1.1755656.

Abstract

Many interesting dynamic properties of biological molecules cannot be simulated directly using molecular dynamics because of nanosecond time scale limitations. These systems are trapped in potential energy minima with high free energy barriers for large numbers of computational steps. The dynamic evolution of many molecular systems occurs through a series of rare events as the system moves from one potential energy basin to another. Therefore, we have proposed a robust bias potential function that can be used in an efficient accelerated molecular dynamics approach to simulate the transition of high energy barriers without any advance knowledge of the location of either the potential energy wells or saddle points. In this method, the potential energy landscape is altered by adding a bias potential to the true potential such that the escape rates from potential wells are enhanced, which accelerates and extends the time scale in molecular dynamics simulations. Our definition of the bias potential echoes the underlying shape of the potential energy landscape on the modified surface, thus allowing for the potential energy minima to be well defined, and hence properly sampled during the simulation. We have shown that our approach, which can be extended to biomolecules, samples the conformational space more efficiently than normal molecular dynamics simulations, and converges to the correct canonical distribution.

摘要

由于纳秒时间尺度的限制,许多生物分子有趣的动力学性质无法直接用分子动力学进行模拟。这些系统被困在具有高自由能垒的势能极小值处,需要大量的计算步骤。许多分子系统的动态演化是通过一系列罕见事件发生的,即系统从一个势能盆地移动到另一个势能盆地。因此,我们提出了一种强大的偏置势函数,它可用于高效加速分子动力学方法,以模拟高能垒的跃迁,而无需事先知道势能阱或鞍点的位置。在这种方法中,通过向真实势添加偏置势来改变势能面,从而提高从势阱的逃逸率,这在分子动力学模拟中加速并扩展了时间尺度。我们对偏置势的定义反映了修改后表面上势能面的潜在形状,从而使势能极小值能够得到很好的定义,并因此在模拟过程中得到适当的采样。我们已经表明,我们的方法可以扩展到生物分子,比普通分子动力学模拟更有效地采样构象空间,并收敛到正确的正则分布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验