Suppr超能文献

通过两个投射神经元的共同激活对运动回路进行机械感觉激活。

Mechanosensory activation of a motor circuit by coactivation of two projection neurons.

作者信息

Beenhakker Mark P, Nusbaum Michael P

机构信息

Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6074, USA.

出版信息

J Neurosci. 2004 Jul 28;24(30):6741-50. doi: 10.1523/JNEUROSCI.1682-04.2004.

Abstract

Individual neuronal circuits can generate multiple activity patterns because of the influence of different projection neurons. However, in most systems it has been difficult to identify and assess the relative contribution of all upstream neurons responsible for the activation of any single activity pattern by a behaviorally relevant stimulus. To elucidate this issue, we used the stomatogastric nervous system (STNS) of the crab. The STNS includes the gastric mill (chewing) motor circuit in the stomatogastric ganglion (STG) and no more than 20 projection neurons that innervate the STG. We previously identified at least some (four) of the projection neurons that are activated directly by the ventral cardiac neuron (VCN) system, a population of mechanosensory neurons that activates the gastric mill circuit. Here we show that two of these projection neurons, the previously identified modulatory commissural neuron 1 (MCN1) and commissural projection neuron 2 (CPN2), are necessary and likely sufficient for the initiation/maintenance of the VCN-elicited gastric mill rhythm. Selective inactivation of either MCN1 or CPN2 still enabled a VCN-elicited gastric mill rhythm. However, because MCN1 and CPN2 have different actions on gastric mill neurons, these manipulations resulted in rhythms distinct from each other and from that occurring in the intact system. After removal of both MCN1 and CPN2, VCN stimulation failed to activate the gastric mill rhythm. Selective conjoint stimulation of MCN1 and CPN2, approximating their VCN-elicited activity patterns and firing frequencies, elicited a VCN-like gastric mill rhythm. Thus the VCN mechanosensory system elicits the gastric mill rhythm via its activation of a subset of the relevant projection neurons.

摘要

由于不同投射神经元的影响,单个神经元回路可以产生多种活动模式。然而,在大多数系统中,很难识别和评估所有上游神经元对行为相关刺激激活任何单一活动模式的相对贡献。为了阐明这个问题,我们使用了螃蟹的口胃神经系统(STNS)。STNS包括口胃神经节(STG)中的胃磨(咀嚼)运动回路以及支配STG的不超过20个投射神经元。我们之前已经确定了至少一些(四个)直接由腹侧心神经元(VCN)系统激活的投射神经元,VCN系统是一群激活胃磨回路的机械感觉神经元。在这里,我们表明,这两个投射神经元,即先前确定的调制连合神经元1(MCN1)和连合投射神经元2(CPN2),对于VCN引发的胃磨节律的启动/维持是必要的,并且可能是足够的。选择性灭活MCN1或CPN2仍然能够产生VCN引发的胃磨节律。然而,由于MCN1和CPN2对胃磨神经元有不同的作用,这些操作导致的节律彼此不同,也与完整系统中发生的节律不同。去除MCN1和CPN2后,VCN刺激未能激活胃磨节律。选择性联合刺激MCN1和CPN2,接近它们由VCN引发的活动模式和放电频率,引发了类似VCN的胃磨节律。因此,VCN机械感觉系统通过激活相关投射神经元的一个子集来引发胃磨节律。

相似文献

1
Mechanosensory activation of a motor circuit by coactivation of two projection neurons.
J Neurosci. 2004 Jul 28;24(30):6741-50. doi: 10.1523/JNEUROSCI.1682-04.2004.
2
Mechanosensory gating of proprioceptor input to modulatory projection neurons.
J Neurosci. 2007 Dec 26;27(52):14308-16. doi: 10.1523/JNEUROSCI.4404-07.2007.
3
State-dependent sensorimotor gating in a rhythmic motor system.
J Neurophysiol. 2017 Nov 1;118(5):2806-2818. doi: 10.1152/jn.00420.2017. Epub 2017 Aug 16.
4
Different sensory systems share projection neurons but elicit distinct motor patterns.
J Neurosci. 2004 Dec 15;24(50):11381-90. doi: 10.1523/JNEUROSCI.3219-04.2004.
6
Divergent co-transmitter actions underlie motor pattern activation by a modulatory projection neuron.
Eur J Neurosci. 2007 Sep;26(5):1148-65. doi: 10.1111/j.1460-9568.2007.05744.x.
7
State-dependent presynaptic inhibition regulates central pattern generator feedback to descending inputs.
J Neurosci. 2008 Sep 17;28(38):9564-74. doi: 10.1523/JNEUROSCI.3011-08.2008.
8
Intercircuit control via rhythmic regulation of projection neuron activity.
J Neurosci. 2004 Aug 25;24(34):7455-63. doi: 10.1523/JNEUROSCI.1840-04.2004.
9
Projection neurons with shared cotransmitters elicit different motor patterns from the same neural circuit.
J Neurosci. 2000 Dec 1;20(23):8943-53. doi: 10.1523/JNEUROSCI.20-23-08943.2000.
10
Proprioceptor regulation of motor circuit activity by presynaptic inhibition of a modulatory projection neuron.
J Neurosci. 2005 Sep 21;25(38):8794-806. doi: 10.1523/JNEUROSCI.2663-05.2005.

引用本文的文献

1
Motor neurons within a network use cell-type specific feedback mechanisms to constrain relationships among ion channel mRNAs.
J Neurophysiol. 2023 Sep 1;130(3):569-584. doi: 10.1152/jn.00098.2023. Epub 2023 Aug 2.
2
Neural circuit regulation by identified modulatory projection neurons.
Front Neurosci. 2023 Mar 17;17:1154769. doi: 10.3389/fnins.2023.1154769. eCollection 2023.
3
Neuromodulation Enables Temperature Robustness and Coupling Between Fast and Slow Oscillator Circuits.
Front Cell Neurosci. 2022 Mar 28;16:849160. doi: 10.3389/fncel.2022.849160. eCollection 2022.
4
Feeding state-dependent modulation of feeding-related motor patterns.
J Neurophysiol. 2021 Dec 1;126(6):1903-1924. doi: 10.1152/jn.00387.2021. Epub 2021 Oct 20.
5
Perturbation-specific responses by two neural circuits generating similar activity patterns.
Curr Biol. 2021 Nov 8;31(21):4831-4838.e4. doi: 10.1016/j.cub.2021.08.042. Epub 2021 Sep 9.
6
The Complement of Projection Neurons Activated Determines the Type of Feeding Motor Program in .
Front Neural Circuits. 2021 Jun 10;15:685222. doi: 10.3389/fncir.2021.685222. eCollection 2021.
7
Coupling between fast and slow oscillator circuits in is temperature-compensated.
Elife. 2021 Feb 4;10:e60454. doi: 10.7554/eLife.60454.
9
Similarities and differences in circuit responses to applied Gly-SIFamide and peptidergic (Gly-SIFamide) neuron stimulation.
J Neurophysiol. 2019 Mar 1;121(3):950-972. doi: 10.1152/jn.00567.2018. Epub 2019 Jan 16.
10
Multimodal sensory information is represented by a combinatorial code in a sensorimotor system.
PLoS Biol. 2018 Oct 15;16(10):e2004527. doi: 10.1371/journal.pbio.2004527. eCollection 2018 Oct.

本文引用的文献

3
INTERNEURONS COMMANDING SWIMMERET MOVEMENTS IN THE CRAYFISH, PROCAMBARUS CLARKI (GIRARD).
Comp Biochem Physiol. 1964 Aug;12:509-25. doi: 10.1016/0010-406x(64)90153-7.
4
The neuronal targets for GABAergic reticulospinal inhibition that stops swimming in hatchling frog tadpoles.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Jan;189(1):29-37. doi: 10.1007/s00359-002-0372-0. Epub 2002 Nov 30.
5
A small-systems approach to motor pattern generation.
Nature. 2002 May 16;417(6886):343-50. doi: 10.1038/417343a.
6
Evidence for a widespread brain stem escape network in larval zebrafish.
J Neurophysiol. 2002 Jan;87(1):608-14. doi: 10.1152/jn.00596.2001.
7
Multiple types of control by identified interneurons in a sensory-activated rhythmic motor pattern.
J Neurosci. 2001 Apr 15;21(8):2903-11. doi: 10.1523/JNEUROSCI.21-08-02903.2001.
8
Information processing with population codes.
Nat Rev Neurosci. 2000 Nov;1(2):125-32. doi: 10.1038/35039062.
9
The roles of co-transmission in neural network modulation.
Trends Neurosci. 2001 Mar;24(3):146-54. doi: 10.1016/s0166-2236(00)01723-9.
10
Neural computations that underlie decisions about sensory stimuli.
Trends Cogn Sci. 2001 Jan 1;5(1):10-16. doi: 10.1016/s1364-6613(00)01567-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验