Paul Ranjan K, Rosenberger William F, Flournoy Nancy
Math and Computing Technology, The Boeing Co., P. O. Box 3707, MS 7L-21, Seattle, WA 98124-2207, USA.
Stat Med. 2004 Aug 30;23(16):2483-95. doi: 10.1002/sim.1834.
A non-parametric multi-dimensional isotonic regression estimator is developed for use in estimating a set of target quantiles from an ordinal toxicity scale. We compare this estimator to the standard parametric maximum likelihood estimator from a proportional odds model for extremely small data sets. A motivating example is from phase I oncology clinical trials, where various non-parametric designs have been proposed that lead to very small data sets, often with ordinal toxicity response data. Our comparison of estimators is performed in conjunction with three of these non-parametric sequential designs for ordinal response data, two from the literature and a new design based on a random walk rule. We also compare with a non-parametric design for binary response trials, by keeping track of ordinal data for estimation purposes, but dichotomizing the data in the design phase. We find that a multidimensional isotonic regression-based estimator far exceeds the others in terms of accuracy and efficiency. A rule by Simon et al. (J. Natl. Cancer Inst. 1997; 89:1138-1147) yields particularly efficient estimators, more so than the random walk rule, but has higher numbers of dose-limiting toxicity. A small data set from a leukemia clinical trial is analysed using our multidimensional isotonic regression-based estimator.
开发了一种非参数多维等距回归估计器,用于从有序毒性量表估计一组目标分位数。对于极小的数据集,我们将此估计器与比例优势模型中的标准参数最大似然估计器进行比较。一个有启发性的例子来自I期肿瘤学临床试验,其中提出了各种非参数设计,这些设计会产生非常小的数据集,通常带有有序毒性反应数据。我们对估计器的比较是结合三种用于有序响应数据的非参数序贯设计进行的,两种来自文献,一种基于随机游走规则的新设计。我们还与二元响应试验的非参数设计进行比较,通过跟踪有序数据以进行估计,但在设计阶段将数据二分法处理。我们发现,基于多维等距回归的估计器在准确性和效率方面远远超过其他估计器。Simon等人(《美国国家癌症研究所杂志》1997年;89:1138 - 1147)提出的规则产生的估计器特别有效,比随机游走规则更有效,但剂量限制毒性的数量更多。使用我们基于多维等距回归的估计器分析了一个白血病临床试验的小数据集。