Suppr超能文献

霸王龙的颅骨力学与进食

Cranial mechanics and feeding in Tyrannosaurus rex.

作者信息

Rayfield Emily J

机构信息

Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK.

出版信息

Proc Biol Sci. 2004 Jul 22;271(1547):1451-9. doi: 10.1098/rspb.2004.2755.

Abstract

It has been suggested that the large theropod dinosaur Tyrannosaurus rex was capable of producing extremely powerful bite forces and resisting multi-directional loading generated during feeding. Contrary to this suggestion is the observation that the cranium is composed of often loosely articulated facial bones, although these bones may have performed a shock-absorption role. The structural analysis technique finite element analysis (FEA) is employed here to investigate the functional morphology and cranial mechanics of the T. rex skull. In particular, I test whether the skull is optimized for the resistance of large bi-directional feeding loads, whether mobile joints are adapted for the localized resistance of feeding-induced stress and strain, and whether mobile joints act to weaken or strengthen the skull overall. The results demonstrate that the cranium is equally adapted to resist biting or tearing forces and therefore the 'puncture-pull' feeding hypothesis is well supported. Finite-element-generated stress-strain patterns are consistent with T. rex cranial morphology: the maxilla-jugal suture provides a tensile shock-absorbing function that reduces localized tension yet 'weakens' the skull overall. Furthermore, peak compressive and shear stresses localize in the nasals rather than the fronto-parietal region as seen in Allosaurus, offering a reason why robusticity is commonplace in tyrannosaurid nasals.

摘要

有人提出,大型兽脚亚目恐龙霸王龙能够产生极其强大的咬合力,并能抵抗进食过程中产生的多方向负荷。与这一观点相反的是,尽管这些骨头可能起到了减震作用,但观察发现其颅骨由通常连接松散的面部骨骼组成。本文采用结构分析技术有限元分析(FEA)来研究霸王龙颅骨的功能形态和力学特性。具体而言,我测试了颅骨是否针对抵抗大型双向进食负荷进行了优化,活动关节是否适应进食引起的应力和应变的局部抵抗,以及活动关节总体上是会削弱还是加强颅骨。结果表明,颅骨同样适应抵抗咬合力或撕裂力,因此“穿刺-拉扯”进食假说得到了有力支持。有限元生成的应力-应变模式与霸王龙的颅骨形态一致:上颌骨-颧骨缝提供了拉伸减震功能,可减少局部张力,但总体上会“削弱”颅骨。此外,与异特龙不同,峰值压缩应力和剪应力集中在鼻骨而非额顶区域,这为霸王龙鼻骨粗壮的现象提供了一个原因。

相似文献

1
Cranial mechanics and feeding in Tyrannosaurus rex.
Proc Biol Sci. 2004 Jul 22;271(1547):1451-9. doi: 10.1098/rspb.2004.2755.
2
Palatal Biomechanics and Its Significance for Cranial Kinesis in Tyrannosaurus rex.
Anat Rec (Hoboken). 2020 Apr;303(4):999-1017. doi: 10.1002/ar.24219. Epub 2019 Jul 18.
3
Using finite-element analysis to investigate suture morphology: a case study using large carnivorous dinosaurs.
Anat Rec A Discov Mol Cell Evol Biol. 2005 Apr;283(2):349-65. doi: 10.1002/ar.a.20168.
4
Estimating maximum bite performance in Tyrannosaurus rex using multi-body dynamics.
Biol Lett. 2012 Aug 23;8(4):660-4. doi: 10.1098/rsbl.2012.0056. Epub 2012 Feb 29.
6
Functional implications of dicynodont cranial suture morphology.
J Morphol. 2010 Jun;271(6):705-28. doi: 10.1002/jmor.10828.
7
The Biomechanics Behind Extreme Osteophagy in Tyrannosaurus rex.
Sci Rep. 2017 May 17;7(1):2012. doi: 10.1038/s41598-017-02161-w.
8
Cranial biomechanics of Diplodocus (Dinosauria, Sauropoda): testing hypotheses of feeding behaviour in an extinct megaherbivore.
Naturwissenschaften. 2012 Aug;99(8):637-43. doi: 10.1007/s00114-012-0944-y. Epub 2012 Jul 12.
9
Cranial design and function in a large theropod dinosaur.
Nature. 2001 Feb 22;409(6823):1033-7. doi: 10.1038/35059070.
10
Puncture-and-Pull Biomechanics in the Teeth of Predatory Coelurosaurian Dinosaurs.
Curr Biol. 2018 May 7;28(9):1467-1474.e2. doi: 10.1016/j.cub.2018.03.042. Epub 2018 Apr 26.

引用本文的文献

2
Two new compsognathid-like theropods show diversified predation strategies in theropod dinosaurs.
Natl Sci Rev. 2025 Feb 22;12(5):nwaf068. doi: 10.1093/nsr/nwaf068. eCollection 2025 May.
4
Morphological evolution and functional consequences of giantism in tyrannosauroid dinosaurs.
iScience. 2024 Aug 5;27(9):110679. doi: 10.1016/j.isci.2024.110679. eCollection 2024 Sep 20.
6
Mechanical demands of bite in plane head shapes of ant (Hymenoptera: Formicidae) workers.
Ecol Evol. 2023 Jun 6;13(6):e10162. doi: 10.1002/ece3.10162. eCollection 2023 Jun.
7
Does the model reflect the system? When two-dimensional biomechanics is not 'good enough'.
J R Soc Interface. 2023 Jan;20(198):20220536. doi: 10.1098/rsif.2022.0536. Epub 2023 Jan 25.
8
The efficacy of computed tomography scanning versus surface scanning in 3D finite element analysis.
PeerJ. 2022 Aug 25;10:e13760. doi: 10.7717/peerj.13760. eCollection 2022.

本文引用的文献

1
Biomechanics of the rostrum and the role of facial sutures.
J Morphol. 2003 Jul;257(1):33-44. doi: 10.1002/jmor.10104.
3
Cranial design and function in a large theropod dinosaur.
Nature. 2001 Feb 22;409(6823):1033-7. doi: 10.1038/35059070.
4
Strain in the braincase and its sutures during function.
Am J Phys Anthropol. 2000 Aug;112(4):575-93. doi: 10.1002/1096-8644(200008)112:4<575::AID-AJPA10>3.0.CO;2-0.
5
Craniofacial sutures: morphology, growth, and in vivo masticatory strains.
J Morphol. 1999 Nov;242(2):167-79. doi: 10.1002/(SICI)1097-4687(199911)242:2<167::AID-JMOR8>3.0.CO;2-1.
7
8
Strain gauge measurement of mesokinetic movement in the lizard Varanus exanthematicus.
J Exp Biol. 1985 Jan;114:53-70. doi: 10.1242/jeb.114.1.53.
9
Mechanical factors in the evolution of the mammalian secondary palate: a theoretical analysis.
J Morphol. 1986 Aug;189(2):199-213. doi: 10.1002/jmor.1051890210.
10
Mechanical properties of cranial sutures.
J Biomech. 1990;23(4):313-21. doi: 10.1016/0021-9290(90)90059-c.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验