Matuszewski M, Trippenbach M, Malomed B A, Infeld E, Skorupski A A
Physics Department, Warsaw University, Hoza 69, PL-00-681 Warsaw, Poland.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004;70(1 Pt 2):016603. doi: 10.1103/PhysRevE.70.016603. Epub 2004 Jul 7.
We propose a scheme for stabilizing spatiotemporal solitons (STSs) in media with cubic self-focusing nonlinearity and "dispersion management," i.e., a layered structure inducing periodically alternating normal and anomalous group-velocity dispersion. We develop a variational approximation for the STS, and verify results by direct simulations. A stability region for the two-dimensional (2D) STS (corresponding to a planar waveguide) is identified. At the borders between this region and that of decay of the solitons, a more sophisticated stable object, in the form of a periodically oscillating bound state of two subpulses, is also found. In the 3D case (bulk medium), all the spatiotemporal pulses spread out or collapse.
我们提出了一种在具有立方自聚焦非线性和“色散管理”的介质中稳定时空孤子(STSs)的方案,所谓“色散管理”即一种诱导正常和反常群速度色散周期性交替的分层结构。我们为时空孤子发展了一种变分近似,并通过直接模拟验证结果。确定了二维(2D)时空孤子(对应平面波导)的一个稳定区域。在该区域与孤子衰减区域的边界处,还发现了一种更复杂的稳定对象,其形式为两个子脉冲的周期性振荡束缚态。在三维(3D)情况(体介质)下,所有时空脉冲都会散开或坍缩。