Suppr超能文献

一种用于重建具有隐藏因素的基因调控网络的贝叶斯方法。

A Bayesian approach to reconstructing genetic regulatory networks with hidden factors.

作者信息

Beal Matthew J, Falciani Francesco, Ghahramani Zoubin, Rangel Claudia, Wild David L

机构信息

Department of Computer Science & Engineering, State University of New York at Buffalo, 201 Bell Hall, Buffalo, NY 14260-2000, USA.

出版信息

Bioinformatics. 2005 Feb 1;21(3):349-56. doi: 10.1093/bioinformatics/bti014. Epub 2004 Sep 7.

Abstract

MOTIVATION

We have used state-space models (SSMs) to reverse engineer transcriptional networks from highly replicated gene expression profiling time series data obtained from a well-established model of T cell activation. SSMs are a class of dynamic Bayesian networks in which the observed measurements depend on some hidden state variables that evolve according to Markovian dynamics. These hidden variables can capture effects that cannot be directly measured in a gene expression profiling experiment, for example: genes that have not been included in the microarray, levels of regulatory proteins, the effects of mRNA and protein degradation, etc.

RESULTS

We have approached the problem of inferring the model structure of these state-space models using both classical and Bayesian methods. In our previous work, a bootstrap procedure was used to derive classical confidence intervals for parameters representing 'gene-gene' interactions over time. In this article, variational approximations are used to perform the analogous model selection task in the Bayesian context. Certain interactions are present in both the classical and the Bayesian analyses of these regulatory networks. The resulting models place JunB and JunD at the centre of the mechanisms that control apoptosis and proliferation. These mechanisms are key for clonal expansion and for controlling the long term behavior (e.g. programmed cell death) of these cells.

AVAILABILITY

Supplementary data is available at http://public.kgi.edu/wild/index.htm and Matlab source code for variational Bayesian learning of SSMs is available at http://www.cse.ebuffalo.edu/faculty/mbeal/software.html.

摘要

动机

我们使用状态空间模型(SSM)从从成熟的T细胞激活模型获得的高度重复的基因表达谱时间序列数据中反向构建转录网络。SSM是一类动态贝叶斯网络,其中观测到的测量值依赖于一些根据马尔可夫动力学演化的隐藏状态变量。这些隐藏变量可以捕捉在基因表达谱实验中无法直接测量的效应,例如:未包含在微阵列中的基因、调节蛋白的水平、mRNA和蛋白质降解的效应等。

结果

我们使用经典方法和贝叶斯方法来解决推断这些状态空间模型的模型结构的问题。在我们之前的工作中,使用了一种自举程序来推导代表“基因-基因”随时间相互作用的参数的经典置信区间。在本文中,变分近似用于在贝叶斯背景下执行类似的模型选择任务。在这些调节网络的经典分析和贝叶斯分析中都存在某些相互作用。所得模型将JunB和JunD置于控制细胞凋亡和增殖机制的中心。这些机制对于克隆扩增以及控制这些细胞的长期行为(例如程序性细胞死亡)至关重要。

可用性

补充数据可在http://public.kgi.edu/wild/index.htm获得,用于SSM变分贝叶斯学习的Matlab源代码可在http://www.cse.ebuffalo.edu/faculty/mbeal/software.html获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验