Lanitis Andreas, Draganova Chrisina, Christodoulou Chris
Department of Computer Science and Engineering, Cyprus College, Nicosia, Cyprus.
IEEE Trans Syst Man Cybern B Cybern. 2004 Feb;34(1):621-8. doi: 10.1109/tsmcb.2003.817091.
We describe a quantitative evaluation of the performance of different classifiers in the task of automatic age estimation. In this context, we generate a statistical model of facial appearance, which is subsequently used as the basis for obtaining a compact parametric description of face images. The aim of our work is to design classifiers that accept the model-based representation of unseen images and produce an estimate of the age of the person in the corresponding face image. For this application, we have tested different classifiers: a classifier based on the use of quadratic functions for modeling the relationship between face model parameters and age, a shortest distance classifier, and artificial neural network based classifiers. We also describe variations to the basic method where we use age-specific and/or appearance specific age estimation methods. In this context, we use age estimation classifiers for each age group and/or classifiers for different clusters of subjects within our training set. In those cases, part of the classification procedure is devoted to choosing the most appropriate classifier for the subject/age range in question, so that more accurate age estimates can be obtained. We also present comparative results concerning the performance of humans and computers in the task of age estimation. Our results indicate that machines can estimate the age of a person almost as reliably as humans.
我们描述了在自动年龄估计任务中对不同分类器性能的定量评估。在此背景下,我们生成了面部外观的统计模型,该模型随后被用作获取面部图像紧凑参数描述的基础。我们工作的目的是设计能够接受基于模型的未见图像表示并对相应面部图像中人物年龄进行估计的分类器。对于此应用,我们测试了不同的分类器:一种基于使用二次函数来建模面部模型参数与年龄之间关系的分类器、一种最短距离分类器以及基于人工神经网络的分类器。我们还描述了对基本方法的变体,即使用特定年龄和/或特定外观的年龄估计方法。在此背景下,我们针对每个年龄组使用年龄估计分类器和/或针对训练集中不同主体集群使用分类器。在这些情况下,部分分类过程致力于为相关的主体/年龄范围选择最合适的分类器,以便能够获得更准确的年龄估计。我们还给出了关于人类和计算机在年龄估计任务中性能的比较结果。我们的结果表明,机器在估计一个人的年龄方面几乎与人类一样可靠。