Kuleshova L L, Wang X W, Wu Y N, Zhou Y, Yu H
Department of Physiology, National University Medical Institutes, National University of Singapore, Block MD11, 10 Medical Drive, Singapore 117597.
Cryo Letters. 2004 Jul-Aug;25(4):241-54.
We have used microencapsulated hepatocytes as model to develop a method of vitreous cryopreservation of large quantities of cell-containing constructs. The method included a pre-equilibration procedure in which the amount of penetrating cryoprotectant was gradually increased by 15% in each step. The optimal vitrification solution consists of 40% ethylene glycol and 0.6M sucrose. The concentration of 1M sucrose used for the first dilution solution with subsequent decrease of sucrose concentration to 0.7 M sucrose and by 0.2-0.15M for each subsequent step. This sucrose dilution procedure had no adverse effect on cell functions. Three cooling rates (400 degrees C/min and above) and three warming rates (650 degrees C/min and above), in combination with the proposed vitrification solution, were equally effective. The optimization of the procedure and solutions allow microencapsulated hepatocytes to be preserved with almost 100% retention of cell functions and no detectable damage to the fragile microcapsules. The de-linking of the cooling/warming rates with the effectiveness of vitrification potentially paves the way for large scale cryopreservation of complex tissue engineered constructs.